Advances in Hybrid Machine Learning and Physics-Based Models for Enhanced Reservoir Simulation

Authors

  • Lymmy Ogbidi Schlumberger Oilfield UK Ltd, UK Author
  • Benneth Oteh TotalEnergies Exploration and Production Kampala, Uganda Author

DOI:

https://doi.org/10.32628/CSEIT24102259

Keywords:

Reservoir simulation, Hybrid modeling, Machine learning integration, Physics-based models, Predictive accuracy, Computational efficiency

Abstract

Reservoir simulation is critical in optimizing resource extraction and ensuring the efficient management of subsurface reservoirs. While rooted in robust physical principles, traditional modeling approaches often face limitations in handling complex reservoir dynamics, computational intensity, and data sparsity. Recent advances in hybrid methodologies combining machine learning (ML) and physics-based models offer transformative solutions to these challenges. This paper explores the evolution and integration of hybrid approaches in reservoir simulation, highlighting key developments such as physics-informed neural networks, surrogate modeling, and adaptive workflows. The benefits of these models, including enhanced predictive accuracy, computational efficiency, and adaptability, are examined alongside the challenges of implementation, such as computational demands and data quality constraints. Practical implications for the industry are discussed, particularly in improving decision-making and optimizing production strategies. The paper concludes with recommendations for further research and industry adoption, emphasizing the need for interdisciplinary collaboration, advancements in explainable artificial intelligence, and the development of standardized frameworks. These hybrid approaches mark a significant milestone in the evolution of reservoir simulation, offering innovative pathways for sustainable and efficient resource management.

Downloads

Download data is not yet available.

References

Aminu, M., Akinsanya, A., Dako, D. A., & Oyedokun, O. (2024). Enhancing cyber threat detection through real-time threat intelligence and adaptive defense mechanisms. International Journal of Computer Applications Technology and Research, 13(8), 11-27.

AMINU, M., AKINSANYA, A., OYEDOKUN, O., & TOSIN, O. (2024). A Review of Advanced Cyber Threat Detection Techniques in Critical Infrastructure: Evolution, Current State, and Future Directions.

Azadpour, M., Saberi, M. R., Javaherian, A., & Shabani, M. (2020). Rock physics model-based prediction of shear wave velocity utilizing machine learning technique for a carbonate reservoir, southwest Iran. Journal of Petroleum Science and Engineering, 195, 107864. DOI: https://doi.org/10.1016/j.petrol.2020.107864

Cao, X., Liu, Z., Hu, C., Song, X., Quaye, J. A., & Lu, N. (2024). Three-Dimensional Geological Modelling in Earth Science Research: An In-Depth Review and Perspective Analysis. Minerals, 14(7), 686. DOI: https://doi.org/10.3390/min14070686

Chen, X., Zhang, K., Ji, Z., Shen, X., Liu, P., Zhang, L., . . . Yao, J. (2023). Progress and Challenges of Integrated Machine Learning and Traditional Numerical Algorithms: Taking Reservoir Numerical Simulation as an Example. Mathematics, 11(21), 4418. DOI: https://doi.org/10.3390/math11214418

Diab, W., Chaabi, O., Alkobaisi, S., Awotunde, A., & Al Kobaisi, M. (2024). Learning generic solutions for multiphase transport in porous media via the flux functions operator. Advances in Water Resources, 183, 104609. DOI: https://doi.org/10.1016/j.advwatres.2023.104609

Elete, T. Y., Nwulu, E. O., Omomo, K. O., & Emuobosa, A. (2022a). Data analytics as a catalyst for operational optimization: A comprehensive review of techniques in the oil and gas sector.

Elete, T. Y., Nwulu, E. O., Omomo, K. O., & Emuobosa, A. (2022b). A generic framework for ensuring safety and efficiency in international engineering projects: Key concepts and strategic approaches.

Elete, T. Y., Nwulu, E. O., Omomo, K. O., & Emuobosa, A. (2023). Alarm rationalization in engineering projects: analyzing cost-saving measures and efficiency gains.

Ganguli, S. S., & Dimri, V. P. (2023). Reservoir characterization: State-of-the-art, key challenges and ways forward. In Developments in structural geology and tectonics (Vol. 6, pp. 1-35): Elsevier. DOI: https://doi.org/10.1016/B978-0-323-99593-1.00015-X

Islam, M. R., Hossain, M. E., Mousavizadegan, S. H., Mustafiz, S., & Abou-Kassem, J. H. (2016). Advanced petroleum reservoir simulation: Towards developing reservoir emulators: John Wiley & Sons. DOI: https://doi.org/10.1002/9781119038573

Khalili, Y., & Ahmadi, M. (2023). Reservoir modeling & simulation: Advancements, challenges, and future perspectives. Journal of Chemical and Petroleum Engineering, 57(2), 343-364.

Makarian, E., Elyasi, A., Moghadam, R. H., Khoramian, R., & Namazifard, P. (2023). Rock physics-based analysis to discriminate lithology and pore fluid saturation of carbonate reservoirs: a case study. Acta Geophysica, 71(5), 2163-2180. DOI: https://doi.org/10.1007/s11600-023-01029-0

Molnar, C., & Freiesleben, T. (2024). Supervised Machine Learning for Science: How to stop worrying and love your black box: Christoph Molnar.

Nwulu, E. O., Elete, T. Y., Aderamo, A. T., Esiri, A. E., & Erhueh, O. V. (2023). Promoting plant reliability and safety through effective process automation and control engineering practices.

Nwulu, E. O., Elete, T. Y., Aderamo, A. T., Esiri, A. E., Omomo, K. O., & Nigeria, L. Optimizing shutdown and startup procedures in oil facilities: A strategic review of industry best practices.

Nwulu, E. O., Elete, T. Y., Omomo, K. O., & Emuobosa, A. (2023). Revolutionizing turnaround management with innovative strategies: Reducing ramp-up durations post-maintenance.

Okedele, P. O., Aziza, O. R., Oduro, P., & Ishola, A. O. (2024a). Assessing the impact of international environmental agreements on national policies: A comparative analysis across regions.

Okedele, P. O., Aziza, O. R., Oduro, P., & Ishola, A. O. (2024b). Carbon pricing mechanisms and their global efficacy in reducing emissions: Lessons from leading economies.

Okedele, P. O., Aziza, O. R., Oduro, P., & Ishola, A. O. (2024c). Climate change litigation as a tool for global environmental policy reform: A comparative study of international case law.

OYEDOKUN, O., Ewim, S. E., & Oyeyemi, O. P. (2024a). A Comprehensive Review of Machine Learning Applications in AML Transaction Monitoring. Retrieved from https://www.ijerd.com/paper/vol20-issue11/2011730743.pdf

OYEDOKUN, O., Ewim, S. E., & Oyeyemi, O. P. (2024b). Developing a conceptual framework for the integration of natural language processing (NLP) to automate and optimize AML compliance processes, highlighting potential efficiency gains and challenges Computer Science & IT Research Journal, 5(10), 2458–2484. doi:https://doi.org/10.51594/csitrj.v5i10.1675 DOI: https://doi.org/10.51594/csitrj.v5i10.1675

Oyedokun, O., Ewim, S. E., & Oyeyemi, O. P. (2024c). Leveraging advanced financial analytics for predictive risk management and strategic decision-making in global markets. Global Journal of Research in Multidisciplinary Studies, 2(02), 016-026. DOI: https://doi.org/10.58175/gjrms.2024.2.2.0051

Rai, R., & Sahu, C. K. (2020). Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with cyber-physical system (cps) focus. IEEe Access, 8, 71050-71073. DOI: https://doi.org/10.1109/ACCESS.2020.2987324

Sharma, P., Chung, W. T., Akoush, B., & Ihme, M. (2023). A review of physics-informed machine learning in fluid mechanics. Energies, 16(5), 2343. DOI: https://doi.org/10.3390/en16052343

Strielkowski, W., Vlasov, A., Selivanov, K., Muraviev, K., & Shakhnov, V. (2023). Prospects and challenges of the machine learning and data-driven methods for the predictive analysis of power systems: A review. Energies, 16(10), 4025. DOI: https://doi.org/10.3390/en16104025

Torzoni, M., Manzoni, A., & Mariani, S. (2023). A multi-fidelity surrogate model for structural health monitoring exploiting model order reduction and artificial neural networks. Mechanical Systems and Signal Processing, 197, 110376. DOI: https://doi.org/10.1016/j.ymssp.2023.110376

Troccoli, E. B., Cerqueira, A. G., Lemos, J. B., & Holz, M. (2022). K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis. Journal of Applied Geophysics, 198, 104555. DOI: https://doi.org/10.1016/j.jappgeo.2022.104555

Uchendu, O., Omomo, K. O., & Esiri, A. E. The concept of big data and predictive analytics in reservoir engineering: The future of dynamic reservoir models.

Uchendu, O., Omomo, K. O., & Esiri, A. E. Conceptual advances in petrophysical inversion techniques: The synergy of machine learning and traditional inversion models. Engineering Science & Technology Journal, 5(11).

Uchendu, O., Omomo, K. O., & Esiri, A. E. (2024a). Conceptual Framework for Data-driven Reservoir Characterization: Integrating Machine Learning in Petrophysical Analysis. Comprehensive Research and Reviews in Multidisciplinary Studies, 2(4), 001–013. doi:DOI:10.57219/crmms.2024.2.2.0041 DOI: https://doi.org/10.57219/crrms.2024.2.2.0041

Uchendu, O., Omomo, K. O., & Esiri, A. E. (2024b). Strenghtening Workforce Stability by Mediating Labor Disputes Successfully. International Journal of Engineering Research and Development, 20(11), 98–1010.

Uchendu, O., Omomo, K. O., & Esiri, A. E. (2024c). Theoritical Insights into Uncertainty Quantification in Reservoir Models: A Bayesian and Stochastic Approach. International Journal of Engineering Research and Development, 20(11), 987–997.

Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.-L. A., Elkhatib, Y., . . . Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEe Access, 7, 65579-65615. DOI: https://doi.org/10.1109/ACCESS.2019.2916648

Willard, J., Jia, X., Xu, S., Steinbach, M., & Kumar, V. (2020). Integrating physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919, 1(1), 1-34.

Yan, M., Huang, C., Bienstman, P., Tino, P., Lin, W., & Sun, J. (2024). Emerging opportunities and challenges for the future of reservoir computing. Nature Communications, 15(1), 2056. DOI: https://doi.org/10.1038/s41467-024-45187-1

Young, L. C. (2022). Compositional reservoir simulation: a review. SPE Journal, 27(05), 2746-2792. DOI: https://doi.org/10.2118/208610-PA

Zhang, T.-F., Tilke, P., Dupont, E., Zhu, L.-C., Liang, L., & Bailey, W. (2019). Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Petroleum Science, 16(3), 541-549. DOI: https://doi.org/10.1007/s12182-019-0328-4

Downloads

Published

25-12-2024

Issue

Section

Research Articles

How to Cite

[1]
Lymmy Ogbidi and Benneth Oteh, “Advances in Hybrid Machine Learning and Physics-Based Models for Enhanced Reservoir Simulation”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 6, pp. 2533–2543, Dec. 2024, doi: 10.32628/CSEIT24102259.