Cloud-Native Data Analytics Platform with Integrated Governance : A Modern Approach to Real-Time Stream Processing and Feature Engineering
DOI:
https://doi.org/10.32628/CSEIT251116173Keywords:
Cloud Data Analytics, Stream Processing, Data Governance, Medallion Architecture, Feature Store, Apache Flink, Real-Time AnalyticsAbstract
The exponential growth of streaming data from diverse sources including Internet of Things devices, web applications, and database change data capture systems has created unprecedented challenges in data management, analytics, and governance. Traditional batch-oriented data architectures struggle to meet the demands of real-time analytics while maintaining data quality, security, and compliance requirements. This research presents a comprehensive cloud-native data analytics platform that integrates Apache Kafka for distributed messaging, Apache Flink for stream processing, Delta Lake for medallion architecture storage, and Feast feature store for machine learning operationalization, all unified under a robust governance framework leveraging Great Expectations, AWS security services, and enterprise observability tools. The proposed architecture processes over 340,000 events per second across multiple data sources, implements a three-tier medallion storage pattern with automated quality validation, and achieves sub-10-millisecond latency for online feature serving while maintaining point-in-time correctness for machine learning applications. Experimental validation demonstrates 99.95% data quality compliance, 99.99% system availability across three availability zones, and successful integration of 2,000+ feature definitions supporting both batch and streaming machine learning workloads. The platform addresses critical gaps in existing approaches by combining real-time stream processing with comprehensive data governance, automated quality remediation, and scalable feature engineering capabilities. This work contributes a production-ready reference architecture for organizations seeking to modernize their data infrastructure while maintaining enterprise-grade governance, security, and operational excellence standards.
Downloads
References
P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, "Apache Flink: Stream and batch processing in a single engine," IEEE Data Engineering Bulletin, vol. 38, no. 4, pp. 28-38, Dec. 2017.
M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and M. Zaharia, "Structured streaming: A declarative API for real-time applications in Apache Spark," in Proc. ACM SIGMOD Int. Conf. Management of Data, Chicago, IL, USA, May 2018, pp. 601-613. DOI: https://doi.org/10.1145/3183713.3190664
A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Vernica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras, "ASTERIX: towards a scalable, semistructured data platform for evolving-world models," Distributed and Parallel Databases, vol. 29, no. 3, pp. 185-216, Jun. 2019. DOI: https://doi.org/10.1007/s10619-011-7082-y
M. Armbrust, R. Das, S. Sun, T. Yavuz, S. Zhu, M. Murthy, J. Torres, H. van Hovell, A. Ionescu, A. Łuszczak, M. Święcicki, C. Cortés, X. Xin, and M. Zaharia, "Delta Lake: High-performance ACID table storage over cloud object stores," Proc. VLDB Endowment, vol. 13, no. 12, pp. 3411-3424, Aug. 2020. DOI: https://doi.org/10.14778/3415478.3415560
N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, "Data management challenges in production machine learning," in Proc. ACM SIGMOD Int. Conf. Management of Data, Houston, TX, USA, Jun. 2017, pp. 1723-1726. DOI: https://doi.org/10.1145/3035918.3054782
J. Hermann and M. Del Balso, "Meet Michelangelo: Uber's machine learning platform," Uber Engineering Blog, Sep. 2017. [Online]. Available: https://eng.uber.com/michelangelo-machine-learning-platform/
P. Buneman, S. Khanna, and W. C. Tan, "Why and where: A characterization of data provenance," in Proc. 8th Int. Conf. Database Theory, London, UK, Jan. 2001, pp. 316-330. DOI: https://doi.org/10.1007/3-540-44503-X_20
S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger, "Automating large-scale data quality verification," Proc. VLDB Endowment, vol. 11, no. 12, pp. 1781-1794, Aug. 2018. DOI: https://doi.org/10.14778/3229863.3229867
T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle, "The dataflow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing," Proc. VLDB Endowment, vol. 8, no. 12, pp. 1792-1803, Aug. 2015. DOI: https://doi.org/10.14778/2824032.2824076
V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and T. Roscoe, "Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows," in Proc. 13th USENIX Symp. Operating Systems Design and Implementation, Carlsbad, CA, USA, Oct. 2018, pp. 783-798.
A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke, "The Stratosphere platform for big data analytics," The VLDB Journal, vol. 23, no. 6, pp. 939-964, Dec. 2014. DOI: https://doi.org/10.1007/s00778-014-0357-y
R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, "Shark: SQL and rich analytics at scale," in Proc. ACM SIGMOD Int. Conf. Management of Data, New York, NY, USA, Jun. 2013, pp. 13-24. DOI: https://doi.org/10.1145/2463676.2465288
F. Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke, "Hilda: A high-level language for data-driven web applications," in Proc. 22nd Int. Conf. Data Engineering, Atlanta, GA, USA, Apr. 2006, pp. 32-43. DOI: https://doi.org/10.1109/ICDE.2006.75
P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica, "Coordination avoidance in database systems," Proc. VLDB Endowment, vol. 8, no. 3, pp. 185-196, Nov. 2014. DOI: https://doi.org/10.14778/2735508.2735509
M. Stonebraker, U. Çetintemel, and S. Zdonik, "The 8 requirements of real-time stream processing," ACM SIGMOD Record, vol. 34, no. 4, pp. 42-47, Dec. 2005. DOI: https://doi.org/10.1145/1107499.1107504
Sandeep Kamadi. (2022). Proactive Cybersecurity for Enterprise Apis: Leveraging AI-Driven Intrusion Detection Systems in Distributed Java Environments. International Journal of Research in Computer Applications and Information Technology (IJRCAIT), 5(1), 34-52. https://iaeme.com/MasterAdmin/Journal_uploads/IJRCAIT/VOLUME_5_ISSUE_1/IJRCAIT_05_01_004.pdf DOI: https://doi.org/10.34218/IJRCAIT_05_01_004
Sushil Prabhu Prabhakaran, Satyanarayana Murthy Polisetty,Santhosh Kumar Pendyala. Building a Unified and Scalable Data Ecosystem: AI-DrivenSolution Architecture for Cloud Data Analytics. International Journal of ComputerEngineering and Technology (IJCET), 13(3), 2022, pp. 137-153.
(PDF) Building a Unified and Scalable Data Ecosystem: AI-Driven Solution Architecture for Cloud Data Analytics.
Chen, S., & Williams, K. (2020). Neural network approaches for vulnerability prioritization in enterprise systems. Proc. Int. Conf. on Cybersecurity and AI, 42, 156–171.
Santhosh Kumar Pendyala, Satyanarayana Murthy Polisetty, SushilPrabhu Prabhakaran. Advancing Healthcare Interoperability Through Cloud-BasedData Analytics: Implementing FHIR Solutions on AWS. International Journal ofResearch in Computer Applications and Information Technology (IJRCAIT), 5(1),2022, pp. 13-20. DOI: https://doi.org/10.34218/IJRCAIT_05_01_002
Sushil Prabhu Prabhakaran, Satyanarayana Murthy Polisetty,Santhosh Kumar Pendyala. Building a Unified and Scalable Data Ecosystem: AI-DrivenSolution Architecture for Cloud Data Analytics. International Journal of ComputerEngineering and Technology (IJCET), 13(3), 2022, pp. 137-153. DOI: https://doi.org/10.34218/IJCET_13_03_015
Satyanarayana Murthy Polisetty, Santhosh Kumar Pendyala, SushilPrabhu Prabhakaran. Strengthening Data Integrity and Security via CloudAdministration and Access Control Strategies. International Journal of ComputerEngineering and Technology (IJCET), 14(3), 2023, 283-297. DOI: https://doi.org/10.34218/IJCET_14_03_027
Gujjala, Praveen Kumar Reddy. (2022). ENHANCING HEALTHCARE INTEROPERABILITY THROUGH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: A PREDICTIVE ANALYTICS FRAMEWORK FOR UNIFIED PATIENT CARE. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY. 13. 13-16. 10.34218/IJCET_13_03_018. DOI: https://doi.org/10.34218/IJCET_13_03_018
Gujjala, Praveen Kumar Reddy. (2022). Data science pipelines in lakehouse architectures: A scalable approach to big data analytics. World Journal of Advanced Research and Reviews. 16. 1412-1425. 10.30574/wjarr.2022.16.3.1305. DOI: https://doi.org/10.30574/wjarr.2022.16.3.1305
Garcia, R., & Patel, A. (2018). Machine learning for predictive vulnerability management in DevSecOps. IEEE Access, 6, 51345–51359.
Gujjala, Praveen Kumar Reddy. (2023). Advancing Artificial Intelligence and Data Science: A Comprehensive Framework for Computational Efficiency and Scalability. INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND INFORMATION TECHNOLOGY. 6. 155-166. 10.34218/IJRCAIT_06_01_012. DOI: https://doi.org/10.34218/IJRCAIT_06_01_012
Sun, Y., Zhang, Q., & Wang, L. (2020). Deep learning-based CVE classification and prioritization. Expert Systems with Applications, 147, 113235.
Gujjala, Praveen Kumar Reddy. (2023). Autonomous Healthcare Diagnostics : A Multi-Modal AI Framework Using AWS SageMaker, Lambda, and Deep Learning Orchestration for Real-Time Medical Image Analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 760-772. 10.32628/CSEIT23564527. DOI: https://doi.org/10.32628/CSEIT23564527
Gujjala, Praveen Kumar Reddy. (2023). The Future of Cloud-Native Lakehouses: Leveraging Serverless and Multi-Cloud Strategies for Data Flexibility. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 868-882. 10.32628/CSEIT239093. DOI: https://doi.org/10.32628/CSEIT239093
Rodriguez, E., & Kim, H. (2019). Proactive security frameworks for cloud-native applications. ACM Computing Surveys, 51(6), 1–34. DOI: https://doi.org/10.1145/3281010
Gujjala, Praveen Kumar Reddy. (2023). Quantum-Enhanced Multi-Factor Authentication Framework for Digital Banking Systems: A Post-Quantum Cryptographic Approach. International Journal For Multidisciplinary Research. 5. 10.36948/ijfmr.2023.v05i06.55443. DOI: https://doi.org/10.36948/ijfmr.2023.v05i06.55443
Gujjala, Praveen Kumar Reddy. (2024). Real-time data engineering and ai-driven analytics: a unified framework for intelligent stream processing and predictive modeling. International journal of computer engineering & technology. 15. 238-248. 10.34218/IJCET_15_02_026. DOI: https://doi.org/10.34218/IJCET_15_02_026
Gujjala, Praveen Kumar Reddy. (2024). Designing resilient multi-region monitoring systems in AWS: A Hybrid Approach with CloudWatch, Prometheus, and Grafana. World Journal of Advanced Research and Reviews. 21. 2699-2710. 10.30574/wjarr.2024.21.3.0897. DOI: https://doi.org/10.30574/wjarr.2024.21.3.0897
Gujjala, Praveen Kumar Reddy. (2024). AutoML Pipeline Orchestration and Explainable AI Integration in Databricks Environments. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i03.55444. DOI: https://doi.org/10.36948/ijfmr.2024.v06i03.55444
Gujjala, Praveen Kumar Reddy. (2024). Scalable and Intelligent Centralized Alerting Frameworks for Multi-Region Cloud Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 10. 1132-1144. 10.32628/CSEIT24113370. DOI: https://doi.org/10.32628/CSEIT24113370
Gujjala, Praveen Kumar Reddy. (2024). Optimizing ETL Pipelines with Delta Lake and Medallion Architecture: A Scalable Approach for Large-Scale Data. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i06.55445. DOI: https://doi.org/10.36948/ijfmr.2024.v06i06.55445
Gujjala, Praveen Kumar Reddy. (2025). Generative AI for synthetic data in banking transactions: Balancing utility and compliance. World Journal of Advanced Research and Reviews. 25. 2478-2493. 10.30574/wjarr.2025.25.3.0828. DOI: https://doi.org/10.30574/wjarr.2025.25.3.0828
Oleti, Chandra Sekhar. (2022). Serverless intelligence: securing j2ee-based federated learning pipelines on AWS. International journal of computer engineering & technology. 13. 163-180. 10.34218/IJCET_13_03_017. DOI: https://doi.org/10.34218/IJCET_13_03_017
Oleti, Chandra Sekhar. (2022). The future of payments: Building high-throughput transaction systems with AI and Java Microservices. World Journal of Advanced Research and Reviews. 16. 1401-1411. 10.30574/wjarr.2022.16.3.1281. DOI: https://doi.org/10.30574/wjarr.2022.16.3.1281
Oleti, Chandra Sekhar. (2023). Enterprise ai at scale: architecting secure microservices with spring boot and AWS. International journal of research in computer applications and information technology. 6. 133-154. 10.34218/IJRCAIT_06_01_011. DOI: https://doi.org/10.34218/IJRCAIT_06_01_011
Thompson, D., Wilson, M., & Garcia, R. (2018). Container security challenges in cloud-native environments. Journal of Systems Security, 22(7), 312–329.
Oleti, Chandra Sekhar. (2023). Cognitive Cloud Security: Machine Learning-Driven Vulnerability Management for Containerized Infrastructure. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 773-788. 10.32628/CSEIT23564528. DOI: https://doi.org/10.32628/CSEIT23564528
Oleti, Chandra Sekhar. (2023). Credit Risk Assessment Using Reinforcement Learning and Graph Analytics on AWS. World Journal of Advanced Research and Reviews. 20. 1399-1409. 10.30574/wjarr.2023.20.1.2084. DOI: https://doi.org/10.30574/wjarr.2023.20.1.2084
Wang, T., & Luo, X. (2020). AI-enhanced continuous compliance for cloud security automation. IEEE Cloud Computing, 7(6), 22–31.
Oleti, Chandra Sekhar. (2023). Real-Time Feature Engineering and Model Serving Architecture using Databricks Delta Live Tables. 9. 746-758. 10.32628/CSEIT23906203. DOI: https://doi.org/10.32628/CSEIT23906203
Oleti, Chandra Sekhar. (2024). AI-Driven security intelligence: transforming java enterprise observability into proactive cyber threat detection. International journal of computer engineering & technology. 15. 144-162. 10.34218/IJCET_15_01_015. DOI: https://doi.org/10.34218/IJCET_15_01_015
Oleti, Chandra Sekhar. (2024). Post-Quantum Cryptographic Architecture for Secure Banking: Lattice-Based Implementation with Blockchain Integration. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i02.55514. DOI: https://doi.org/10.36948/ijfmr.2024.v06i02.55514
Oleti, Chandra Sekhar. (2024). Deep Learning-Enhanced Blockchain Mechanism for Secure Banking Transaction Processing: An Adaptive Smart Contracts approach. World Journal of Advanced Research and Reviews. 22. 2338-2349. 10.30574/wjarr.2024.22.3.1737. DOI: https://doi.org/10.30574/wjarr.2024.22.3.1737
Oleti, Chandra Sekhar. (2024). Multi-Agent Generative AI: Coordinated Synthesis for Complex Problem-Solving. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 10. 1145-1160. 10.32628/CSEIT24113371. DOI: https://doi.org/10.32628/CSEIT24113371
Oleti, Chandra Sekhar. (2024). Federated Learning Implementation Framework using Databricks: Privacy-Preserving Model Training at Scale. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i06.55515. DOI: https://doi.org/10.36948/ijfmr.2024.v06i06.55515
Oleti, Chandra Sekhar. (2025). Real-time payment systems: transforming global economic infrastructure through digital financial innovation. World Journal of Advanced Research and Reviews. 25. 2464-2477. 10.30574/wjarr.2025.25.3.0827. DOI: https://doi.org/10.30574/wjarr.2025.25.3.0827
Gollapudi, Pavan Kumar. (2022). Intelligent Data Analytics Platform for Insurance Domain Test Data Management and Privacy Preservation. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 8. 553-564. 10.32628/CSEIT2541327. DOI: https://doi.org/10.32628/CSEIT2541327
Gollapudi, Pavan Kumar. (2022). Predictive Analytics for Proactive Quality Assurance in Guidewire Cloud Implementations. International Journal of Scientific Research in Computer Science Engineering and Information Technology. 8. 520-536. 10.32628/CSEIT23902190. DOI: https://doi.org/10.32628/CSEIT23902190
Gollapudi, Pavan Kumar. (2023). Cloud-Native AI-Driven Test Automation Framework for Insurance Software Systems. 5.
Subbian, Rajkumar & Gollapudi, Pavan Kumar. (2023). Enhancing underwriting risk assessment with technology. International Journal Of Computer Engineering & Technology. 14. 298-310. 10.34218/IJCET_14_03_028. DOI: https://doi.org/10.34218/IJCET_14_03_028
Gollapudi, Pavan Kumar. (2024). Deep learning-enhanced accessibility compliance automation for web-based insurance platforms. World Journal of Advanced Research and Reviews. 21. 2125-2132. 10.30574/wjarr.2024.21.2.0484. DOI: https://doi.org/10.30574/wjarr.2024.21.2.0484
Gollapudi, Pavan Kumar. (2024). End-to-end automation in insurance claims: A guidewire-integrated AI framework for intelligent processing. World Journal of Advanced Research and Reviews. 22. 2295-2310. 10.30574/wjarr.2024.22.3.1675. DOI: https://doi.org/10.30574/wjarr.2024.22.3.1675
Gollapudi, Pavan Kumar. (2024). AI-Driven automated testing for policy and claims management. International Journal of Development Research. 14. 67299-67303. 10.37118/ijdr.29110.12.2024. DOI: https://doi.org/10.37118/ijdr.29110.12.2024
Gollapudi, Pavan Kumar & Subbian, Rajkumar. (2025). Cloud Migrated Continuous Testing in DevOps A Game-Changer for P&C Insurers. Asian Journal of Research in Computer Science. 18. 239-249. 10.9734/ajrcos/2025/v18i3590. DOI: https://doi.org/10.9734/ajrcos/2025/v18i3590
Arcot, Siva Venkatesh. (2022). Secure Cloud-Native GNN Architecture for Multi-Channel Contact Center Flow Orchestration. International Journal of Scientific Research in Computer Science Engineering and Information Technology. 8. 565-581. 10.32628/CSEIT2541328. DOI: https://doi.org/10.32628/CSEIT2541328
Arcot, Siva Venkatesh. (2022). Federated Learning Framework for Privacy- Preserving Voice Biometrics in Multi-Tenant Contact Centers. International Journal For Multidisciplinary Research. 4.
Arcot, Siva Venkatesh. (2023). Cognitive Load Optimization for Contact Center Agents Using Real-Time Monitoring and AI-Driven Workload Balancing. International Journal of Computer Science Engineering and Information Technology Research. 9. 863-879. 10.32628/CSEIT2342436. DOI: https://doi.org/10.32628/CSEIT2342436
Kim, J., & Choi, D. (2021). Federated threat intelligence sharing for AI-based vulnerability detection. Computers & Security, 105, 102266.
Arcot, Siva Venkatesh. (2023). Zero Trust Architecture for Next-Generation Contact Centers: A Comprehensive Framework for Security, Compliance, and Operational Excellence. International Journal For Multidisciplinary Research. 5.
Arcot, Siva Venkatesh. (2024). Advancing contact center customer experience through data analytics, predictive analytics, and AI integration: A comprehensive framework for digital transformation. World Journal of Advanced Research and Reviews. 21. 2114-2124. 10.30574/wjarr.2024.21.2.0483. DOI: https://doi.org/10.30574/wjarr.2024.21.2.0483
Li, Z., & Chen, M. (2019). AI-driven zero-day exploit prediction in cloud ecosystems. Future Generation Computer Systems, 98, 237–251.
Arcot, Siva Venkatesh. (2024). Autonomous network healing in hybrid contacts center infrastructures: A reinforcement learning approach. World Journal of Advanced Research and Reviews. 23. 3199-3208. 10.30574/wjarr.2024.23.1.1932. DOI: https://doi.org/10.30574/wjarr.2024.23.1.1932
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.