AI-Powered Crop Recommendation for Smart Farming, Current Barriers, and Future Perspectives
DOI:
https://doi.org/10.32628/CSEIT251117134Keywords:
Agriculture Data, Machine Learning, Data Analysis, Recommendation System, Crop Selection, Pattern Recognition, Crop Yield Prediction, Consolidated LearningAbstract
Crop analysis and prediction is a quickly growing field that is very important for improving farming methods. Crop recommendation is important in farming because it helps farmers choose the best crops for their land and climate. In the past, this process depended a lot on expert knowledge, which took a lot of time and work. Also, with the world population expected to reach 9.7 billion by 2050, it is even more important to find ways to grow more food in a way that is good for the environment. Machine learning techniques can be very helpful in automating crop recommendations and finding pests and diseases. This will help farmers get the most out of their land while also keeping the soil healthy and adding nutrients that are needed. This paper examines the efficacy of crop recommendation utilizing seven distinct machine-learning algorithms. The proposed system uses a variety of factors, such as soil composition and climate data, to accurately predict which crops will grow best in certain areas. This system could change the way crops are recommended, which would help farmers of all sizes by increasing crop yields, sustainability, and overall profits. We have reached almost perfect accuracy by training and testing the machine learning algorithms with a wide range of configurations on a large set of historical data. We consistently achieve accuracy exceeding 95% across all models, with the peak accuracy reaching 99.5%. This research's results could help farmers, agronomists, and policymakers make better use of their resources and increase agricultural productivity by giving them data-driven insights.
Downloads
References
Godfray HC, J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. DOI: https://doi.org/10.1126/science.1185383
Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. DOI: https://doi.org/10.3390/foods11152301
WHO. World Hunger Is Still Not Going Down after Three Years and Obesity Is Still Growing—UN Report. Available online: https://www.who.int/news/item/15-07-2019-world-hunger-is-still-not-going-down-after-three-years-and-obesity-is-stillgrowing-un-report
Y. Perwej, Firoj Parwej, “A Neuroplasticity (Brain Plasticity) Approach to Use in Artificial Neural Network”, International Journal of Scientific & Engineering Research (IJSER), France , ISSN 2229 – 5518, Volume 3, Issue 6, Pages 1- 9, 2012, DOI: 10.13140/2.1.1693.2808
Venkata K. S. Maddala, Dr. Shantanu Shahi, Yusuf Perwej, H G Govardhana Reddy, “Machine Learning based IoT application to Improve the Quality and precision in Agricultural System”, European Chemical Bulletin (ECB), ISSN: 2063-5346, SCOPUS, Hungary, Volume 12, Special Issue 6, Pages 1711 – 1722, May 2023, DOI: 10.31838/ecb/2023.12.si6.157
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Vol. 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, March 2023
H. Bach and W. Mauser, ‘‘Sustainable agriculture and smart farming,’’ in Earth Observation Open Science and Innovation. Cham, Switzerland: Springer, 2018, pp. 261–269. DOI: https://doi.org/10.1007/978-3-319-65633-5_12
E. F. I. Raj, M. Appadurai, and K. Athiappan, ‘‘Precision farming in modern agriculture,’’ in Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT. Berlin, Germany: Springer, 2022, pp. 61–87 DOI: https://doi.org/10.1007/978-981-16-6124-2_4
B. Chen et al., “A joint learning Im-BiLSTM model for incomplete time-series Sentinel-2A data imputation and crop classification,” Int.J. Appl. Earth Obs. Geoinformation, vol. 108, p. 102762, Apr. 2022, doi: 10.1016/j.jag.2022.102762. DOI: https://doi.org/10.1016/j.jag.2022.102762
Sarvesh Kumar, Dr. Shobhit Sinha, Y. Perwej, Ankit Shukla, Dr. Nikhat Akhtar, “Integrated Ensemble Learning Techniques for Precision Crop Yield Prediction”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 1072-1083, June 2025, DOI: 10.32628/CSEIT25113391
Farheen Siddiqui, Homa Rizvi, Y. Perwej, Shamim Ahmad, Dr. Nikhat Akhtar, “Leveraging AI for Social Impact in Environmental Sustainability”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, No. 4, Pages 253-266, August 2025, DOI: 10.32628/IJSRSET2512506 DOI: https://doi.org/10.32628/IJSRSET2512506
Sadenova, M.; Beisekenov, N.; Varbanov, P.S.; Pan, T. Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan. Agriculture 2023, 13, 1195
Lin, T.; Zhong, R.;Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.C.; Li, H. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environ. Res. Lett. 2020, 15, 034016 DOI: https://doi.org/10.1088/1748-9326/ab66cb
Grisso, R.D.; Alley, M.M.; Brann, D.E.; Donohue, S.J. Precision Farming Tools: Variable-Rate Application; Virginia Cooperative Extension: Petersburg, VA, USA, 2010.
Kitchen, N.R.; Clay, D.E. Precision agriculture techniques for nutrient management. In GIS Applications in Agriculture; Clay, D.E., Shanahan, J.F., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 245–276.
Probyn-Smith, R. Adopting Precision Agriculture Technologies for Farm Efficiency and Sustainability; AgriFutures Australia: Wagga Wagga, Australia, 2018.
Clay, D.E.; Reese, C.; Chang, J.; Clay, S.A. Grid soil sampling and its implications for nutrient management. Agron. J. 2017, 109, 2210–2220.
Kajal, Neha Singh, Nikhat Akhtar, Ms. Sana Rabbani, Y. Perwej, Susheel Kumar, “Using Emerging Deep Convolutional Neural Networks (DCNN) Learning Techniques for Detecting Phony News”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 10, Issue 1, Pages 122-137, 2024, DOI: 10.32628/CSEIT2410113
N.Akhtar, Kumar Bibhuti B. Singh, Devendra Agarwal, Y. Perwej, “Improving Quality of Life with Emerging AI and IoT Based Healthcare Monitoring Systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, ISSN: 2456-3307, Volume 11, Issue 1, Pages 96-107, January 2025, DOI: 10.32628/CSEIT2514551
Sadenova, M.; Beisekenov, N.; Varbanov, P.S.; Pan, T. Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan. Agriculture 2023, 13, 1195
Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms. Environ. Res. Lett. 2019, 14, 124026 DOI: https://doi.org/10.1088/1748-9326/ab5268
Y. Perwej, “The Bidirectional Long-Short-Term Memory Neural Network based Word Retrieval for Arabic Documents”, Transactions on Machine Learning and Artificial Intelligence (TMLAI), which is published by Society for Science and Education, United Kingdom (UK), ISSN 2054-7390, Volume 3, Issue 1, Pages 16 - 27, 2015, DOI: 10.14738/tmlai.31.863 DOI: https://doi.org/10.14738/tmlai.31.863
Javed, A.; Ali, E.; Afzal, K.B.; Osman, A.; Riaz, S. Soil fertility: Factors affecting soil fertility, and biodiversity responsible for soil fertility. Int. J. Plant Anim. Environ. Sci. 2022, 12, 21–33. DOI: https://doi.org/10.26502/ijpaes.202129
Emrullah, A.C.A.R.; Ozerdem, M.S.; Ustundag, B.B. Machine learning based regression model for prediction of soil surface humidity over moderately vegetated fields. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4. DOI: https://doi.org/10.1109/Agro-Geoinformatics.2019.8820461
Alberto Gonzalez-Sanchez, Juan Frausto-Solis, Waldo Ojeda- Bustamante, "Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction", The Scientific World Journal, vol. 2014, Article ID 509429, 10 pages, 2014. DOI: https://doi.org/10.1155/2014/509429
Woittiez, L. S., Van Wijk, M. T., Slingerland, M., Van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. DOI: https://doi.org/10.1016/j.eja.2016.11.002
Kajal, Neha Singh, Nikhat Akhtar, Ms. Sana Rabbani, Y. Perwej, Susheel Kumar, “Using Emerging Deep Convolutional Neural Networks (DCNN) Learning Techniques for Detecting Phony News”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 10, Issue 1, Pages 122-137, 2024, DOI: 10.32628/CSEIT2410113 DOI: https://doi.org/10.32628/CSEIT2410113
N.Akhtar, Kumar Bibhuti B. Singh, Devendra Agarwal, Y. Perwej, “Improving Quality of Life with Emerging AI and IoT Based Healthcare Monitoring Systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, ISSN: 2456-3307, Volume 11, Issue 1, Pages 96-107, January 2025, DOI: 10.32628/CSEIT2514551 DOI: https://doi.org/10.32628/CSEIT2514551
Y. Perwej, “Recurrent Neural Network Method in Arabic Words Recognition System”, International Journal of Computer Science and Telecommunications (IJCST), which is published by Sysbase Solution (Ltd), UK, London, (http://www.ijcst.org) , ISSN 2047-3338, Volume 3, Issue 11, Pages 43-48, 2012
Oikonomidis A, CatalCand Kassahun A 2022 Hybrid deep learning-based models for crop yield prediction Appl. Artif. Intell. 36 2031822 DOI: https://doi.org/10.1080/08839514.2022.2031823
Nagarjuna Tandra, Nikhat Akhtar, K Padmanaban, L. Guganathan, “A finite-element dual-level contextual informed neural network with swarm space hopping algorithm based optimal feature selection and detection for EEG-based epileptic seizure detection”, Swarm and Evolutionary Computation, Elsevier , SCIE, Volume 97, Pages 1- 19, August 2025, DOI: 10.1016/j.swevo.2025.102072 DOI: https://doi.org/10.1016/j.swevo.2025.102072
Hasan M, MarjanMA, UddinMP, AfjalMI, Kardy S,MaS andNamY 2023 Ensemble machine learning-based recommendation system for effective prediction of suitable agricultural crop cultivation Frontiers in Plant Science 14 1234555 DOI: https://doi.org/10.3389/fpls.2023.1234555
Sarvesh Kumar, Dr. Shobhit Sinha, Dr. Yusuf Perwej, Ankit Shukla, Dr. Nikhat Akhtar, “Integrated Ensemble Learning Techniques for Precision Crop Yield Prediction”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 1072-1083, June 2025, DOI: 10.32628/CSEIT25113391 DOI: https://doi.org/10.32628/CSEIT25113391
Kumar Bibhuti B. Singh, N. Akhtar, Devendra Agarwal, Susheel Kumar, Y. Perwej, “An Evaluation of OpenCV's Investigation into Hand Gesture Recognition Methods”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, Issue 1, Pages 01-14, January 2025, DOI: 10.32628/IJSRSET25121150 DOI: https://doi.org/10.32628/IJSRSET25121150
Sadenova, M., Beisekenov, N., Varbanov, P.S. and Pan, T., 2023. Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), p.1195. DOI: https://doi.org/10.3390/agriculture13061195
Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Goncalves,W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791 DOI: https://doi.org/10.1016/j.compag.2020.105791
Ren, P.; Li, H.; Han, S.; Chen, R.; Yang, G.; Yang, H.; Feng, H.; Zhao, C. Estimation of Soybean Yield by Combining Maturity Group Information and Unmanned Aerial Vehicle Multi-Sensor Data Using Machine Learning. Remote Sens. 2023, 15, 4286. DOI: https://doi.org/10.3390/rs15174286
Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 26 DOI: https://doi.org/10.1186/s13007-022-00861-7
Sunny Kumar, Apoorva Dwivedi, Yusuf Perwej, Moazzam Haidari, Siddharth Singh, Dr. Nagarajan Gurusamy, “A Smart IoT-Image Processing System for Real-Time Skin Cancer Detection”, Journal of Neonatal Surgery (JNS), SCOPUS, ISSN: 2226-0439 (Online), Volume 14, Issue S14, Pages 823-831, April 2025, DOI: 10.52783/jns.v14.4330
Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deepconvolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. DOI: https://doi.org/10.1016/j.fcr.2019.02.022
Farheen Siddiqui, Sana Rabbani, Dr. Yusuf Perwej, Hina Rabbani, Dr. Nikhat Akhtar, “Leveraging Cloud Computing, IoT and Big Data for Intelligent Infrastructure Management in Smart Cities”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 301 - 310, August 2025, DOI: 10.6084/m9.jetir.JETIR2508335
Whetton, R.; Zhao, Y.; Shaddad, S.; Mouazen, A.M. Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI. Comput. Electron. Agricult. 2017, 138, 127–136. DOI: https://doi.org/10.1016/j.compag.2017.04.016
Y. Perwej, Firoj Parwej, Nikhat Akhtar, “An Intelligent Cardiac Ailment Prediction Using Efficient ROCK Algorithm and K- Means & C4.5 Algorithm”, European Journal of Engineering Research and Science (EJERS), Bruxelles, Belgium, ISSN: 2506-8016 (Online), Vol. 3, No. 12, Pages 126 – 134, 2018, DOI: 10.24018/ejers.2018.3.12.989 DOI: https://doi.org/10.24018/ejers.2018.3.12.989
N. Akhtar, Hemlata Pant, Apoorva Dwivedi, Vivek Jain, Y. Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 10, Issue 3, Pages 118-132, 2023, DOI: 10.32628/IJSRSET2310375 DOI: https://doi.org/10.32628/IJSRSET2310375
Anjali Yadav, Shruti Dwivedi, Anubhav Dwivedi, Ujjwal Thakur, Dr. Nikhat Akhtar, “Intelligent Disease Diagnosis: A Multi-Disease Prediction Approach Using Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Volume 12, No. 3, Pages 98 -109, May 2025, DOI: 10.32628/IJSRSET251235 DOI: https://doi.org/10.32628/IJSRSET251235
Amanullah Ansari, Shrejal Singh, Dr. Nikhat Akhtar, “AI-Driven Crop Disease Detection and Management in Smart Agriculture”, International Journal of Scientific Research in Science and Technology (IJSRST), SSN: 2395-6011, Volume 12, Issue 3, Pages 309-319, May 2025, DOI: 10.32628/IJSRST2512341 DOI: https://doi.org/10.32628/IJSRST2512341
Apoorva Dwivedi, K. Manivannan, Sunny Kumar, Neha Anand, Y. Perwej, Rakhi Kamra, “A Real-Time Environmental Pollution Monitoring Framework Using IoT and Remote Sensing Technologies”, International Journal of Environmental Sciences (IJES), SCOPUS, ISSN: 2229-7359, Volume 11, Number 7s, Pages 1064 - 1075, June 2025 DOI: https://doi.org/10.64252/repndy27
Tian, H.;Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Observ. Geoinform. 2021, 102, 102375. DOI: https://doi.org/10.1016/j.jag.2021.102375
Elavarasan, D.; Durai Raj Vincent, P.M. Fuzzy deep learning-based crop yield prediction model for sustainable agronomical frameworks. Neural Comput. Appl. 2021, 33, 13205–13224. DOI: https://doi.org/10.1007/s00521-021-05950-7
Y. Perwej, Nikhat Akhtar, Devendra Agarwal, “The emerging technologies of Artificial Intelligence of Things (AIoT) current scenario, challenges, and opportunities”, Book Title “Convergence of Artificial Intelligence and Internet of Things for Industrial Automation”, SCOPUS, ISBN: 978-1-032-42844-4, CRC Press, Taylor & Francis Group, 2024 Link:https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509240-1/emerging-technologiesartificial-intelligence-things-aiot-current-scenario-challenges-opportunities-yusuf-perwej-nikhatakhtar-devendra agarwal?context=ubx&refId=537f1a8f-6a94-4439-b337-3ad3d1ce8845, DOI: 10.1201/9781003509240-1 DOI: https://doi.org/10.1201/9781003509240-1
N. Akhtar, Nazia Tabassum, Asif Perwej, Y. Perwej,“ Data Analytics and Visualization Using Tableau Utilitarian for COVID-19 (Coronavirus)”, Global Journal of Engineering and Technology Advances (GJETA), ISSN : 2582-5003, Volume 3, Issue 2, Pages 28-50, 2020, DOI: 10.30574/gjeta.2020.3.2.0029 DOI: https://doi.org/10.30574/gjeta.2020.3.2.0029
Mahmoud AbouGhaly, Y. Perwej, Mumdouh Mirghani Mohamed Hassan, Nikhat Akhtar, “Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring” , International Journal of Intelligent Systems and Applications in Engineering, SCOPUS, ISSN: 2147- 6799, Volume 12, Issue 22s, Pages 720–727, July 2024
Anmol Chauhan, Ms. Sana Rabbani, Devendra Agarwal, Nikhat Akhtar, Yusuf Perwej, “Diffusion Dynamics Applied with Novel Methodologies”, International Journal of Innovative Research in Computer Science and Technology (IJIRCST), ISSN (Online): 2347-5552, Volume-12, Issue-4, Pages 52 - 58, July 2024, DOI: 10.55524/ijircst.2024.12.4.9 DOI: https://doi.org/10.55524/ijircst.2024.12.4.9
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Volume 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, 2023
Nikhat Akhtar, Firoj Parwej, Yusuf Perwej, “A Perusal of Big Data Classification and Hadoop Technology”, International Transaction of Electrical and Computer Engineers System (ITECES), USA, ISSN (Print): 2373-1273 ISSN (Online): 2373-1281, Volume 4, No. 1, Pages 26-38, May 2017, DOI: 10.12691/iteces-4-1-4
Y. Perwej, “The Ambient Scrutinize of Scheduling Algorithms in Big Data Territory”, International Journal of Advanced Research (IJAR), ISSN 2320-5407, Volume 6, Issue 3, Pages 241-258, March 2018, DOI: 10.21474/IJAR01/6672 DOI: https://doi.org/10.21474/IJAR01/6672
D. Dahiphale, R. Karve, A. V. Vasilakos, H. Liu, Z. Yu, A. Chhajer, J. Wang, and C. Wang, “An advanced mapreduce: Cloud mapreduce, enhancements and applications,” IEEE Transactions on Network and Service Management, vol. 11, no. 1, pp. 101–115, 2014. DOI: https://doi.org/10.1109/TNSM.2014.031714.130407
D. Dahiphale, “Mapreduce for graphs processing: New big data algorithm for 2-edge connected components and future ideas,” IEEE Access, vol. 11, pp. 54 986–55 001, 2023 DOI: https://doi.org/10.1109/ACCESS.2023.3281266
Neha Anand, Arpita Vishwakarma, Y. Perwej, Neeta Bhusal Sharma, Atifa Parveen, “A Hybrid Deep Learning Ensemble Approach for Enhanced Data Mining Efficiency”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 268 - 276, August 2025, DOI:10.6084/m9.jetir.JETIR2508238
Sarvesh Kumar, Y. Perwej, Farheen Siddiqui, Ankit Shukla, Dr. Nikhat Akhtar, “A Data-Driven Framework for Fake News Detection Via Web Scraping and Machine Learning Approach”, International Journal of Innovative Science and Research Technology (IJISRT), ISSN- 2456-2165, Volume 10, Issue 6, Pages 1391 - 1404, June 2025, DOI: 10.38124/ijisrt/25jun1003 DOI: https://doi.org/10.38124/ijisrt/25jun1003
V. Iglovikov, S. Mushinskiy, and V. Osin, “Satellite imagery feature detection using deep convolutional neural network: A kaggle competition, arXiv preprint arXiv:1706.06169, 2017
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.
B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics in deep neural networks,” in 2018 Chinese Control and Decision Conference, 2018, pp. 1836–1841. DOI: https://doi.org/10.1109/CCDC.2018.8407425
J. T. Barron, “A general and adaptive robust loss function,” in Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition, 2019, pp. 4331–4339. DOI: https://doi.org/10.1109/CVPR.2019.00446
A. M. Taqi, A. Awad, F. Al-Azzo, and M. Milanova, “The impact of multi-optimizers and data augmentation on tensorflow convolutional neural network performance,” in 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 2018, pp. 140–145. DOI: https://doi.org/10.1109/MIPR.2018.00032
Asif Perwej, K. P. Yadav, Vishal Sood, Y. Perwej, “An Evolutionary Approach to Bombay Stock Exchange Prediction with Deep Learning Technique”, IOSR Journal of Business and Management (IOSR-JBM), e-ISSN: 2278-487X, p-ISSN: 2319-7668, USA, Volume 20, Issue 12,Ver. V, Pages 63-79, December. 2018., DOI: 10.9790/487X-2012056379
A. Calzadilla, T. Zhu, K. Rehdanz, R. S. Tol, and C. Ringler, “Climate change and agriculture: Impacts and adaptation options in south africa,” Water Resources and Economics, vol. 5, pp. 24–48, 2014 DOI: https://doi.org/10.1016/j.wre.2014.03.001
Y. Perwej, “Unsupervised Feature Learning for Text Pattern Analysis with Emotional Data Collection: A Novel System for Big Data Analytics”, IEEE International Conference on Advanced computing Technologies & Applications (ICACTA'22), SCOPUS, IEEE No: #54488 ISBN No Xplore: 978-1-6654-9515-8, Coimbatore, India, 2022 DOI: https://doi.org/10.1109/ICACTA54488.2022.9753501
Venkata K. S. Maddala, Dr. Shantanu Shahi, Yusuf Perwej, H G Govardhana Reddy, “Machine Learning based IoT application to Improve the Quality and precision in Agricultural System”, European Chemical Bulletin (ECB), ISSN: 2063-5346, SCOPUS, Hungary, Volume 12, Special Issue 6, Pages 1711 – 1722, May 2023, DOI: 10.31838/ecb/2023.12.si6.157
Patil V. H. ., Dhanke J. ., Ghaly M. A. ., Patil, R. N. ., Yusuf Perwej, Shrivastava A., “A Novel Approach for Crop Selection and Water Management using Mamdani’s Fuzzy Inference and IoT” , International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), SCOPUS, ISSN: 2321-8169, Volume 11, Issue 9, Pages 62-68, September 2023 DOI: https://doi.org/10.17762/ijritcc.v11i9.8320
López-Aguilar, K.; Benavides-Mendoza, A.; González-Morales, S.; Juárez-Maldonado, A.; Chinas-Sánchez, P.; Morelos-Moreno, A. Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter. Agriculture 2020, 10, 97. DOI: https://doi.org/10.3390/agriculture10040097
Ma, Y.; Zhang, Z. A Bayesian Domain Adversarial Neural Network for Corn Yield Prediction. IEEE Geosci. Remote Sens. Lett. 2022, 19 DOI: https://doi.org/10.1109/LGRS.2022.3211444
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.