Review of Lung Cancer Detection and Classification Image Processing Techniques
DOI:
https://doi.org/10.32628/CSEIT2511624Keywords:
lung cancer, tumour, thresholding, nodule, segmentationAbstract
The aim of this review is to present an overview of Lung Cancer Detection and Classification Using Digital Image Processing computer aided design systems. The discovery of cellular breakdown in the lungs through picture handling was a significant apparatus for the analysis. Several techniques were presented with the goal of having a thorough understanding of the techniques that are used during lung cancer detection. The techniques analysed in this review includes, CT scan examination, thresholding technique, nodule segmentation techniques, pre-processing and segmentation techniques and classification techniques. Models used during classification were also analysed with the goal of presenting a comprehensive analysis of these techniques as they are used during lung cancer detection. CAD was found to be the most popular technique being used.
Downloads
References
A. M. A. A. T. A. &. S. M. Gindi, "A Comparative Study for Comparing Two Feature ExtractionMethods and Two Classifiers in Classification of Earlystage Lung Cancer Diagnosis of chest x-ray images.," Journal of American Science, vol. 6, no. 10, pp. 13-22, 2016.
K. K. M. W. S. I. T. R. &. A. H. Suzuki, "Radiologic classification of smalladenocarcinoma of the lung: radiologic-pathologic correlation and its prognostic impact," The Annals of Thoracic, pp. 413-419, 2016.
G. T. S. &. Z. Xiuhua, "Prediction Models for Malignant Pulmonary Nodules Based-on Texture Features of CT Image," 2017.
T. F. A. &. K. K. Aggarwal, "Feature extraction and LDA based classification of lung nodules in chest CT scan images," 2015. DOI: https://doi.org/10.1109/ICACCI.2015.7275773
M. L. G. C. J. M. J. T. B. K. D. a. H. S. G. Armato, "Computerized detection of pulmonary nodules on CT scans," Radiographics, vol. 19, no. 5, pp. 1303– 1311,, 2016. DOI: https://doi.org/10.1148/radiographics.19.5.g99se181303
H. H. a. Y. G. S. Y. Yim, "Hybrid lung segmentation in chest CTimages for computer-aided diagnosis," in 7th International Workshop onEnterprise Networking and Computing in Healthcare Industry,HEALTHCOM2005, 2015.
J. R. C. A. Y. S. N. G. D. R. a. D. S. P. J. Pu, "Adaptive border marching algorithm: automatic lung segmentation on chest CT images," Computerized Medical Imaging and Graphics, vol. 32, no. 6, p. 452–462, 2014. DOI: https://doi.org/10.1016/j.compmedimag.2008.04.005
S. D. Z. a. J. L. Q. Gao, "Accurate lung segmentation for X-ray CT images," in Proceedings of the 3rd International Conference on Natural Computation (ICNC ’07), vol. 2, p. 275– 279, 2017.
M. G. M. Jibi John, "Multilevel Thresholding Based Segmentation and Feature Extraction for Pulmonary Nodule Detection," in Procedia Technology 24, 2016, p. 957 – 963. DOI: https://doi.org/10.1016/j.protcy.2016.05.209
S. T. A. R. H. X. X. S. a. L. M. P. Annangi, "Region based active contour method for x-ray lung segmentation using prior shape and lowlevel features," Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: fromNanotoMacro (ISBI'10), p. 892–895, April 2015.
F. Q. Z. X. e. a. Y. Shi, "Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics," IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 481-494, 2018. DOI: https://doi.org/10.1109/TMI.2007.908130
C. B. a. R. B. S. Sun, "Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach," IEEE Transactions onMedical Imaging, vol. 31, no. 2, pp. 449-460, 2015. DOI: https://doi.org/10.1109/TMI.2011.2171357
A. B. a. N. Paragios, "Landmark-based segmentation of lungs while handling partial correspondences using sparse graph-based priors," Proceedings of the International Symposium on Biomedical Imaging (ISBI'11), p. 989–995, 2015.
J. W. N. B. e. a. M. Sofka, "Multi-stage learning for robust lung segmentation in challenging CT volumes," Proceedings of the International Conference on Medical 27 ImagingComputing and Computer-Assisted Intervention (MICCAI ’11), p. 667–674, 2016.
Q. S. M. S. E. A. H. a. J. M. R. P. Hua, "Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm," Proceedings of the International Symposium on Biomedical Imaging (ISBI ’11), p. 2072–2075, 2015.
E. M. V. R. J. C. G. a. B. V. G. T. T. J. P. Kockelkorn, "Interactive lung segmentation in CT scans with severe abnormalities," Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI ’10), p. 564–567, April 2016.
G. G. R. F. M. A. E.-G. T. H. a. T. A. El-Baz, "A new stochastic framework for accurate lung segmentation," in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI ’08), New York, NY, USA, 2018, p. 322–330.
G. G. R. F. T. H. a. T. S. A. El-Baz, "A framework for unsupervised segmentation of lung tissues from low dose computed tomography images," in Proceedings of the British Machine Vision Conference, Leeds, UK, September 2018.
R. W. a. A. Zwartkruis, "Optimal thresholding for 3D segmentationof pulmonary nodules in high resolution CT," International Congress Series, vol. 1230, no. 1, p. 653–658, 2015. DOI: https://doi.org/10.1016/S0531-5131(01)00102-9
A. P. R. D. F. Y. a. C. I. H. W. J. Kostis, "Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images," IEEE Transactions on Medical Imaging, vol. 22, no. 10, p. 1259–1274, 2019. DOI: https://doi.org/10.1109/TMI.2003.817785
A. P. R. W. J. K. B. Z. a. C. I. H. D. F. Yankelevitz, "Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation," Radiology, vol. 217, no. 1, p. 251–256, 2019. DOI: https://doi.org/10.1148/radiology.217.1.r00oc33251
R. G. B. Z. a. C. I. H. D. F. Yankelevitz, "Small pulmonary nodules: evaluation with repeat CT—preliminary experience," Radiology, vol. 212, no. 2, p. 561–566, 2019. DOI: https://doi.org/10.1148/radiology.212.2.r99au33561
H. A. M. V. a. X. Y. J. Dehmeshki, "Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach," IEEE Transactions on Medical Imaging, vol. 27, no. 4, p. 467–480, 2018. DOI: https://doi.org/10.1109/TMI.2007.907555
G. P. F. V. a. G. V. S. Diciotti, "3D segmentation algorithm of small lung nodules in spiral CT images," IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 1, p. 7–19, 2018. DOI: https://doi.org/10.1109/TITB.2007.899504
A. K. J. M. D. M. S. a. A. K. T. Kubota, "Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models," Medical Image Analysis, vol. 15, no. 1, p. 133–154, 2015. DOI: https://doi.org/10.1016/j.media.2010.08.005
E. &. P. V. Rendon-Gonzalez, "Automatic Lung nodule segmentation and classification in CT images based on SVM," in 9Th International Kharkiv Symposium On Physics And Engineering Of Microwaves, Millimeter And Submillimeter Waves (MSMW), 2016. DOI: https://doi.org/10.1109/MSMW.2016.7537995
M. &. Y. M. Miah, "Detection of lung cancer from CT image using image processing and neural network," in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2015.
N. N. H. O. e. a. Y. Kawata, "Computerized analysis of 3-D pulmonary nodule images in surrounding and internal structure feature spaces," in IEEE International Conference on Image Processing, 2016.
E. M. H. N. W. J. W. S. J. G. G. a. D. R. A. M. F. McNitt-Gray, "A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results," Medical Physics, vol. 26, no. 6, p. 880–888, 2015. DOI: https://doi.org/10.1118/1.598603
M. F. M.-G. S. R. R. e. a. S. K. Shah, "Computeraized diagnosis of the solitary pulmonary nodule," Academic Radiology, vol. 12, no. 5, p. 570–575, 2015. DOI: https://doi.org/10.1016/j.acra.2005.01.018
L. M. H. B. S. e. a. T. W. Way, "Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours," Medical Physics, vol. 33, no. 7, p. 2323–2337, 2016. DOI: https://doi.org/10.1118/1.2207129
H. P. C. M. M. G. e. a. T.W.Way, "Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study," Physics in Medicine and Biology, vol. 53, no. 5, p. 1295–1312, 2018. DOI: https://doi.org/10.1088/0031-9155/53/5/009
J. W. G. a. S. J. Swensen, "Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis," Radiology, vol. 196, no. 3, p. 823–829, 2015. DOI: https://doi.org/10.1148/radiology.196.3.7644650
K. N. H. e. a. Y.Matsuki, "Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis," American Journal of Roentgenology, vol. 178, no. 3, p. 657–663, 2016. DOI: https://doi.org/10.2214/ajr.178.3.1780657
D. F. Y. I. M. D. W. B. T. G. R. a. F. S. C. I. Henschke, "Neural networks for the analysis of small pulmonary nodules," Clinical Imaging, vol. 21, no. 6, p. 390–399, 2017. DOI: https://doi.org/10.1016/S0899-7071(97)81731-7
L. Y. T. F. Y. F. L. a. Z. S. C. B. Lo, "Classification of lung nodules in diagnostic CT: an approach based on 3-D vascular features, nodule density distributions, and shape features," in Medical Imaging: Image Processing, 2018, p. 183–189.
S. T. A. P. C. &. N. Khobragade, "Automatic detection of major lung diseases using Chest Radiographs and classification by feed-forward artificial neural network," in IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. DOI: https://doi.org/10.1109/ICPEICES.2016.7853683
L. K. P. Kollabhanu Prakash, "Analysis of Mammography for Identifying Cancer Cells Using Convolution Neural network," 2020.
A. Zhou, "Deep Learning for Categorizations of Lungs Cancer CT Image," in IEEE/ACM International conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.