Robust Crop Prediction Framework Using Soil Classification and Ensemble Methods
DOI:
https://doi.org/10.32628/CSEIT2511646Keywords:
Agriculture Data, Soil Series, Machine Learning, Crop Selection, Pre-process, Crop Yield Prediction, FeaturesAbstract
Because the population of the globe is always growing, the agricultural sector is very significant in terms of meeting the world's food requirements. However, traditional agricultural techniques do not always make the best use of crops in a manner that is advantageous to the environment and does not squander resources. Maximizing crop output is of vital importance for ensuring food security and economic stability, especially in countries in which agriculture plays a significant role in the economy. diverse kinds of soil have diverse characteristics that are suitable for growing a variety of crops. In order to increase the number of crops grown in this area, a variety of different strategies and models are used these days. This system makes use of machine learning methodologies in order to recommend crops that are appropriate for the kind or sequence of soil. The model will simply inform you of the kind of soil you have, and then, depending on the results, it will be able to provide suggestions for crops that would thrive in that soil. Utilizing a variety of different classifiers, the model is able to provide a recommendation for the most suitable crop.
Downloads
References
Li, L.; Wang, B.; Feng, P.; Liu, D.L.; He, Q.; Zhang, Y.; Wang, Y.; Li, S.; Lu, X.; Yue, C.; et al. Developing machine learning models with multi-source environmental data to predict wheat yield in China. Comput. Electron. Agric. 2022, 194, 106790. DOI: https://doi.org/10.1016/j.compag.2022.106790
van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [CrossRef] DOI: https://doi.org/10.1016/j.compag.2020.105709
Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture 2023, 13, 225. DOI: https://doi.org/10.3390/agriculture13010225
Shamim Ahmad, F. Siddiqui, Y. Perwej, H. Rizvi, Dr. Nikhat Akhtar, “An Intelligent Decision Framework for Soil Evaluation and Crop Selection Using Artificial Intelligence”, International Journal of Novel Research and Development (IJNRD), ISSN: 2456-4184, Volume 10, Issue 11, Pages 283- 292, November 2025
Y. Perwej, Firoj Parwej, “A Neuroplasticity (Brain Plasticity) Approach to Use in Artificial Neural Network”, International Journal of Scientific & Engineering Research (IJSER), France , ISSN 2229 – 5518, Volume 3, Issue 6, Pages 1- 9, 2012, DOI: 10.13140/2.1.1693.2808
Venkata K. S. Maddala, Dr. Shantanu Shahi, Yusuf Perwej, H G Govardhana Reddy, “Machine Learning based IoT application to Improve the Quality and precision in Agricultural System”, European Chemical Bulletin (ECB), ISSN: 2063-5346, SCOPUS, Hungary, Volume 12, Special Issue 6, Pages 1711 – 1722, May 2023, DOI: 10.31838/ecb/2023.12.si6.157
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Vol. 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, March 2023
M. Fathi, R. Shah-Hosseini, and A. Moghimi, “3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data,” Remote Sens., vol. 15, no. 23, Art. no. 23, Jan. 2023, doi: 10.3390/rs15235551. DOI: https://doi.org/10.3390/rs15235551
Champaneri, M.; Chachpara, D.; Chandvidkar, C.; Rathod, M. Crop Yield Prediction Using Machine Learning. Int. J. Sci. Res. 2020, 9, 2.
Sarvesh Kumar, Dr. Shobhit Sinha, Y. Perwej, Ankit Shukla, Dr. Nikhat Akhtar, “Integrated Ensemble Learning Techniques for Precision Crop Yield Prediction”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 1072-1083, June 2025, DOI: 10.32628/CSEIT25113391
C. Sun, H. Zhang, L. Xu, C. Wang, and L. Li, “Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data,” Agriculture, vol. 11, no. 10, Art. no. 10, Oct. 2021, doi: 10.3390/agriculture11100977. DOI: https://doi.org/10.3390/agriculture11100977
Farheen Siddiqui, Homa Rizvi, Y. Perwej, Shamim Ahmad, Dr. Nikhat Akhtar, “Leveraging AI for Social Impact in Environmental Sustainability”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, No. 4, Pages 253-266, August 2025, DOI: 10.32628/IJSRSET2512506 DOI: https://doi.org/10.32628/IJSRSET2512506
Gupta, S.; Geetha, A.; Sankaran, K.S.; Zamani, A.S.; Ritonga, M.; Raj, R.; Ray, S.; Mohammed, H.S. Machine learning-and feature selection-enabled framework for accurate crop yield prediction. J. Food Qual. 2022, 2022, 6293985. DOI: https://doi.org/10.1155/2022/6293985
Satterthwaite, D.; Mcgranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. Ser. B 2010, 365, 2809–2820 DOI: https://doi.org/10.1098/rstb.2010.0136
Lin, T.; Zhong, R.;Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.C.; Li, H. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environ. Res. Lett. 2020, 15, 034016 DOI: https://doi.org/10.1088/1748-9326/ab66cb
T. K. Fegade and B. V. Pawar, "Crop prediction using artificial neural network and support vector machine," Data Management, Analytics and Innovation, Springer, Berlin, Germany, pp. 311-324, 2020. DOI: https://doi.org/10.1007/978-981-13-9364-8_23
Sweta Singh, Shilpi Shukla, Yusuf Perwej, Farheen Siddiqui, Nikhat Akhtar, “Optimizing Crop Yield Forecasts Through Deep Neural Network Architectures Using Omdena Dataset”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, No. 5, Pages 377-389, October 2025, DOI: 10.32628/IJSRSET2513819 DOI: https://doi.org/10.32628/IJSRSET2513819
Alberto Gonzalez-Sanchez, Juan Frausto-Solis, Waldo Ojeda- Bustamante, "Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction", The Scientific World Journal, vol. 2014, Article ID 509429, 10 pages, 2014. DOI: https://doi.org/10.1155/2014/509429
Woittiez, L. S., Van Wijk, M. T., Slingerland, M., Van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. DOI: https://doi.org/10.1016/j.eja.2016.11.002
Kajal, Neha Singh, Nikhat Akhtar, Ms. Sana Rabbani, Y. Perwej, Susheel Kumar, “Using Emerging Deep Convolutional Neural Networks (DCNN) Learning Techniques for Detecting Phony News”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 10, Issue 1, Pages 122-137, 2024, DOI: 10.32628/CSEIT2410113 DOI: https://doi.org/10.32628/CSEIT2410113
N.Akhtar, Kumar Bibhuti B. Singh, Devendra Agarwal, Y. Perwej, “Improving Quality of Life with Emerging AI and IoT Based Healthcare Monitoring Systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, ISSN: 2456-3307, Volume 11, Issue 1, Pages 96-107, January 2025, DOI: 10.32628/CSEIT2514551 DOI: https://doi.org/10.32628/CSEIT2514551
Y. Perwej, “The Bidirectional Long-Short-Term Memory Neural Network based Word Retrieval for Arabic Documents”, Transactions on Machine Learning and Artificial Intelligence (TMLAI), which is published by Society for Science and Education, United Kingdom (UK), ISSN 2054-7390, Volume 3, Issue 1, Pages 16 - 27, 2015, DOI: 10.14738/tmlai.31.863 DOI: https://doi.org/10.14738/tmlai.31.863
Y. Perwej, “Recurrent Neural Network Method in Arabic Words Recognition System”, International Journal of Computer Science and Telecommunications (IJCST), which is published by Sysbase Solution (Ltd), UK, London, (http://www.ijcst.org) , ISSN 2047-3338, Volume 3, Issue 11, Pages 43-48, 2012
Oikonomidis A, CatalCand Kassahun A 2022 Hybrid deep learning-based models for crop yield prediction Appl. Artif. Intell. 36 2031822 DOI: https://doi.org/10.1080/08839514.2022.2031823
Nagarjuna Tandra, Nikhat Akhtar, K Padmanaban, L. Guganathan, “A finite-element dual-level contextual informed neural network with swarm space hopping algorithm based optimal feature selection and detection for EEG-based epileptic seizure detection”, Swarm and Evolutionary Computation, Elsevier , SCIE, Volume 97, Pages 1- 19, August 2025, DOI: 10.1016/j.swevo.2025.102072 DOI: https://doi.org/10.1016/j.swevo.2025.102072
Hasan M, MarjanMA, UddinMP, AfjalMI, Kardy S,MaS andNamY 2023 Ensemble machine learning-based recommendation system for effective prediction of suitable agricultural crop Frontiers in Plant Science 14 1234555 DOI: https://doi.org/10.3389/fpls.2023.1234555
Sarvesh Kumar, Dr. Shobhit Sinha, Dr. Yusuf Perwej, Ankit Shukla, Dr. Nikhat Akhtar, “Integrated Ensemble Learning Techniques for Precision Crop Yield Prediction”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 1072-1083, June 2025, DOI: 10.32628/CSEIT25113391 DOI: https://doi.org/10.32628/CSEIT25113391
Kumar Bibhuti B. Singh, N. Akhtar, Devendra Agarwal, Susheel Kumar, Y. Perwej, “An Evaluation of OpenCV's Investigation into Hand Gesture Recognition Methods”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, Issue 1, Pages 01-14, January 2025, DOI: 10.32628/IJSRSET25121150 DOI: https://doi.org/10.32628/IJSRSET25121150
Sadenova, M., Beisekenov, N., Varbanov, P.S. and Pan, T., 2023. Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), p.1195. DOI: https://doi.org/10.3390/agriculture13061195
Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. DOI: https://doi.org/10.1016/j.compag.2018.05.012
Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Goncalves,W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791 DOI: https://doi.org/10.1016/j.compag.2020.105791
Shilpi Shukla, Sweta Singh, Yusuf Perwej, Farheen Siddiqui, Nikhat Akhtar, “AI-Powered Crop Recommendation for Smart Farming, Current Barriers, and Future Perspectives”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), Volume 11, Issue 5, Pages 308-323, October 2025, DOI: 10.32628/CSEIT251117134 DOI: https://doi.org/10.32628/CSEIT251117134
Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 26 DOI: https://doi.org/10.1186/s13007-022-00861-7
Sunny Kumar, Apoorva Dwivedi, Yusuf Perwej, Moazzam Haidari, Siddharth Singh, Dr. Nagarajan Gurusamy, “A Smart IoT-Image Processing System for Real-Time Skin Cancer Detection”, Journal of Neonatal Surgery (JNS), SCOPUS, ISSN: 2226-0439 (Online), Volume 14, Issue S14, Pages 823-831, April 2025, DOI: 10.52783/jns.v14.4330
Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. DOI: https://doi.org/10.1016/j.fcr.2019.02.022
Farheen Siddiqui, Sana Rabbani, Dr. Yusuf Perwej, Hina Rabbani, Dr. Nikhat Akhtar, “Leveraging Cloud Computing, IoT and Big Data for Intelligent Infrastructure Management in Smart Cities”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 301 - 310, August 2025, DOI: 10.6084/m9.jetir.JETIR2508335
Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. DOI: https://doi.org/10.1016/j.compag.2015.11.018
Nikhat Akhtar, Y. Perwej, Anjali Yadav, “Bi-LSTM Models for Optimized Crop Selection and Yield Forecast in Precision Agriculture”, Journal of Applied and Fundamental Sciences (JAFS), ISSN- 2395-5554, ISSN (online) 2395-5562, Volume 10, Issue 1, Pages 37 - 47, December 2025
Y. Perwej, Firoj Parwej, Nikhat Akhtar, “An Intelligent Cardiac Ailment Prediction Using Efficient ROCK Algorithm and K- Means & C4.5 Algorithm”, European Journal of Engineering Research and Science (EJERS), Bruxelles, Belgium, ISSN: 2506-8016 (Online), Vol. 3, No. 12, Pages 126 – 134, 2018, DOI: 10.24018/ejers.2018.3.12.989 DOI: https://doi.org/10.24018/ejers.2018.3.12.989
N. Akhtar, Hemlata Pant, Apoorva Dwivedi, Vivek Jain, Y. Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 10, Issue 3, Pages 118-132, 2023, DOI: 10.32628/IJSRSET2310375
Anjali Yadav, Shruti Dwivedi, Anubhav Dwivedi, Ujjwal Thakur, Dr. Nikhat Akhtar, “Intelligent Disease Diagnosis: A Multi-Disease Prediction Approach Using Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Volume 12, No. 3, Pages 98 -109, May 2025, DOI: 10.32628/IJSRSET251235 DOI: https://doi.org/10.32628/IJSRSET251235
Amanullah Ansari, Shrejal Singh, Dr. Nikhat Akhtar, “AI-Driven Crop Disease Detection and Management in Smart Agriculture”, International Journal of Scientific Research in Science and Technology (IJSRST), SSN: 2395-6011, Volume 12, Issue 3, Pages 309-319, May 2025, DOI: 10.32628/IJSRST2512341 DOI: https://doi.org/10.32628/IJSRST2512341
Apoorva Dwivedi, K. Manivannan, Sunny Kumar, Neha Anand, Y. Perwej, Rakhi Kamra, “A Real-Time Environmental Pollution Monitoring Framework Using IoT and Remote Sensing Technologies”, International Journal of Environmental Sciences (IJES), SCOPUS, ISSN: 2229-7359, Volume 11, Number 7s, Pages 1064 - 1075, June 2025 DOI: https://doi.org/10.64252/repndy27
Tian, H.;Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Observ. Geoinform. 2021, 102, 102375. DOI: https://doi.org/10.1016/j.jag.2021.102375
Elavarasan, Raj Vincent, P.M. Fuzzy deep learning-based crop yield prediction model for sustainable agronomical frameworks. Neural Comput. Appl. 2021, 33, 13205–13224. DOI: https://doi.org/10.1007/s00521-021-05950-7
Y. Perwej, Nikhat Akhtar, Devendra Agarwal, “The emerging technologies of Artificial Intelligence of Things (AIoT) current scenario, challenges, and opportunities”, Book Title “Convergence of Artificial Intelligence and Internet of Things for Industrial Automation”, SCOPUS, ISBN: 978-1-032-42844-4, CRC Press, Taylor & Francis Group, 2024 Link:https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509240-1/emerging-technologiesartificial-
intelligence-things-aiot-current-scenario-challenges-opportunities-yusuf-perwej-nikhatakhtar-devendra-agarwal?context=ubx&refId=537f1a8f-6a94-4439-b337-3ad3d1ce8845, DOI: 10.1201/9781003509240-1 DOI: https://doi.org/10.1201/9781003509240-1
N. Akhtar, Nazia Tabassum, Asif Perwej, Y. Perwej,“ Data Analytics and Visualization Using Tableau Utilitarian for COVID-19 (Coronavirus)”, Global Journal of Engineering and Technology Advances (GJETA), ISSN : 2582-5003, Volume 3, Issue 2, Pages 28-50, 2020, DOI: 10.30574/gjeta.2020.3.2.0029 DOI: https://doi.org/10.30574/gjeta.2020.3.2.0029
Mahmoud AbouGhaly, Y. Perwej, Mumdouh Mirghani Mohamed Hassan, Nikhat Akhtar, “Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring” , International Journal of Intelligent Systems and Applications in Engineering, SCOPUS, ISSN: 2147- 6799, Volume 12, Issue 22s, Pages 720–727, July 2024
Anmol Chauhan, Ms. Sana Rabbani, Devendra Agarwal, Nikhat Akhtar, Yusuf Perwej, “Diffusion Dynamics Applied with Novel Methodologies”, International Journal of Innovative Research in Computer Science and Technology (IJIRCST), ISSN (Online): 2347-5552, Volume-12, Issue-4, Pages 52 - 58, July 2024, DOI: 10.55524/ijircst.2024.12.4.9 DOI: https://doi.org/10.55524/ijircst.2024.12.4.9
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Volume 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, 2023
López-Aguilar, K.; Benavides-Mendoza, A.; González-Morales, S.; Juárez-Maldonado, A.; Chinas-Sánchez, P.; Morelos-Moreno, A. Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter. Agriculture 2020, 10, 97. DOI: https://doi.org/10.3390/agriculture10040097
Dunderski, D.; Jac´imovic´, G.; Crnobarac, J.; Viskovic´, J.; Latkovic´, D. Using Digital Image Analysis to Estimate Corn Ear Traits in Agrotechnical Field Trials: The Case with Harvest Residues and Fertilization Regimes. Agriculture 2023, 13, 732. DOI: https://doi.org/10.3390/agriculture13030732
Fernandez-Gallego, J.A.; Buchaillot, M.L.; Gracia-Romero, A.; Vatter, T.; Diaz, O.V.; Aparicio Gutiérrez, N.; Nieto-Taladriz, M.T.; Kerfal, S.; Serret, M.D.; Araus, J.L.; et al. Cereal Crop Ear Counting in Field Conditions Using Zenithal RGB Images. J. Vis. Exp.2019, 144, e58695. DOI: https://doi.org/10.3791/58695-v
Neha Anand, Arpita Vishwakarma, Y. Perwej, Neeta Bhusal Sharma, Atifa Parveen, “A Hybrid Deep Learning Ensemble Approach for Enhanced Data Mining Efficiency”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 268 - 276, August 2025, DOI:10.6084/m9.jetir.JETIR2508238
Sarvesh Kumar, Y. Perwej, Farheen Siddiqui, Ankit Shukla, Dr. Nikhat Akhtar, “A Data-Driven Framework for Fake News Detection Via Web Scraping and Machine Learning Approach”, International Journal of Innovative Science and Research Technology (IJISRT), ISSN- 2456-2165, Volume 10, Issue 6, Pages 1391 - 1404, 2025, DOI: 10.38124/ijisrt/25jun1003 DOI: https://doi.org/10.38124/ijisrt/25jun1003
Yang,W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comp. Electr. Agric. 2021, 184, 106092 DOI: https://doi.org/10.1016/j.compag.2021.106092
Ma, Y.; Zhang, Z. A Bayesian Domain Adversarial Neural Network for Corn Yield Prediction. IEEE Geosci. Remote Sens. Lett. 2022, 19 DOI: https://doi.org/10.1109/LGRS.2022.3211444
Nikhat Akhtar, Devendera Agarwal, “An Efficient Mining for Recommendation System for Academics”, International Journal of Recent Technology and Engineering(IJRTE), ISSN 2277-3878 (online), SCOPUS, Volume-8, Issue-5, Pages 1619-1626, January 2020, DOI: 10.35940/ijrte.E5924.018520 DOI: https://doi.org/10.35940/ijrte.E5924.018520
Vaishali Singh, Soumya Verma, Ayush Srivastava, Abhishek Dubey, Dr. Nikhat Akhtar, “Eco- Sensing System for Water Pollution and Microplastic Detection”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 679-690, May 2025, DOI: 10.32628/CSEIT25113333 DOI: https://doi.org/10.32628/CSEIT25113333
Nikhat Akhtar, Dr. Hemlata Pant, Apoorva Dwivedi, Vivek Jain, Yusuf Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 10, Issue 3, Pages 118-132, May-June-2023, DOI: 10.32628/IJSRSET2310375 DOI: https://doi.org/10.32628/IJSRSET2310375
Neha Kulshrestha, Nikhat Akhtar, Yusuf Perwej, “Deep Learning Models for Object Recognition and Quality Surveillance”, Accepted International Conference on Emerging Trends in IoT and Computing Technologies (ICEICT-2022), ISBN 978-10324-852-49, SCOPUS, Routledge, Taylor & Francis, CRC Press, Chapter 75, Pages 508-518, Goel Institute of Technology & Management, Lucknow, May 2022, Link - https://www.routledge.com/Emerging-Trends-in-IoT-and-Computing-Technologies-Proceedings-of-International/Tripathi-Verma/p/book/9781032485249# DOI: 10.1201/9781003350057-75 DOI: https://doi.org/10.1201/9781003350057-75
Rezk, N.G.; Hemdan, E.E.D.; Attia, A.F.; El-Sayed, A.; El-Rashidy, M.A. An efficient IoT based smart farming system using machine learning algorithms. Multimed. Tools Appl. 2021, 80, 773–797 DOI: https://doi.org/10.1007/s11042-020-09740-6
Elbasi, E.; Zaki, C.; Topcu, A.E.; Abdelbaki, W.; Zreikat, A.I.; Cina, E.; Shdefat, A.; Saker, L. Crop prediction model using machine learning algorithms. Appl. Sci. 2023, 13, 9288 DOI: https://doi.org/10.3390/app13169288
Y. Perwej, Shaikh Abdul Hannan, Nikhat Akhtar, “The State-of-the-Art Handwritten Recognition of Arabic Script Using Simplified Fuzzy ARTMAP and Hidden Markov Models”, International Journal of Computer Science and Telecommunications (IJCST), Which is published by Sysbase Solution (Ltd), UK, London (http://www.ijcst.org) , ISSN 2047-3338, Volume, Issue 8, Pages 26 - 32, August 2014
Firoj Parwej, Nikhat Akhtar, Y. Perwej, “A Close-Up View About Spark in Big Data Jurisdiction”, International Journal of Engineering Research and Application (IJERA), ISSN: 2248-9622, Volume 8, Issue 1, (Part -I1), Pages 26-41, January 2018, DOI: 10.9790/9622-0801022641
Xiao, F.; Wang, H.; Xu, Y.; Zhang, R. Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review. Agronomy 2023, 13, 1625 DOI: https://doi.org/10.3390/agronomy13061625
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.