Extreme Gradient Boosting Performance on Air Pollution Level Classification in DKI Jakarta

Authors

  • Harni Kusniyati Faculty of Computer Science, Mercu Buana University, Jakarta, Indonesia Author
  • Yerico Immanuel Rumahorbo Faculty of Computer Science, Mercu Buana University, Jakarta, Indonesia Author
  • Raka Yusuf Faculty of Computer Science, Mercu Buana University, Jakarta, Indonesia Author

DOI:

https://doi.org/10.32628/CSEIT2511649

Keywords:

Air pollution, Air pollution classification, XGBoost, Jakarta, ISPU

Abstract

Air pollution is a major challenge in metropolitan cities like Jakarta. This study evaluates the performance of the Extreme Gradient Boosting (XGBoost) algorithm in classifying air pollution levels using the Air Pollution Standard Index (ISPU) dataset from Satu Data Jakarta. The research stages include data cleaning, selecting relevant features, and applying XGBoost to detect patterns that affect air quality. Experimental results show that XGBoost achieves high performance with an accuracy of 90.22%, a precision of 90.55%, and a recall of 90.22%. These findings confirm the effectiveness of XGBoost in identifying air pollution levels, while providing important contributions to air quality monitoring and the development of more appropriate pollution mitigation policies in Jakarta.

Downloads

Download data is not yet available.

References

Anandari, A. A., Wadjdi, A. F., & Harsono, G. (2024). Dampak Polusi Udara terhadap Kesehatan dan Kesiapan Pertahanan Negara di Provinsi DKI Jakarta. Journal on Education, 6(2), 10868–10884. https://doi.org/10.31004/joe.v6i2.4880 DOI: https://doi.org/10.31004/joe.v6i2.4880

Arifianti, F. P., & Salam, A. (2024). XGBoost and Random Forest Optimization using SMOTE to Classify Air Quality. Advance Sustainable Science, Engineering and Technology, 6(1), 02401025. https://doi.org/10.26877/asset.v6i1.18136 DOI: https://doi.org/10.26877/asset.v6i1.18136

Astriyani, M., Laela, I. N., Lestari, D. P., Anggraeni, L., & Astuti, T. (2023). Analisis Klasifikasi Data Kualitas Udara Dki Jakarta Menggunakan Algoritma C.45. JuSiTik : Jurnal Sistem Dan Teknologi Informasi Komunikasi, 6(1), 36–41. https://doi.org/10.32524/jusitik.v6i1.790 DOI: https://doi.org/10.32524/jusitik.v6i1.790

Bianto, M. A., Kusrini, K., & Sudarmawan, S. (2020). Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes. Creative Information Technology Journal, 6(1), 75. https://doi.org/10.24076/citec.2019v6i1.231 DOI: https://doi.org/10.24076/citec.2019v6i1.231

C.W., F. D., Emilia, R., P., G. G., & Indrayatna, F. (2023). Klasifikasi Tingkat Pencemaran Udara Kota Jakarta Tahun 2021 Menggunakan Algoritma Decision Tree. Prosiding Nasional SNSA 2, 127–131. https://www.data.jakarta.go.id/

Eka, F. F. (2021). Deteksi Penyakit Kanker Payudara Menggunakan Deep Learning. 1–56.

Ertiana, E. . (2022). Dampak Pencemaran Udara Terhadap Kesehatan Masyarakat: Literatur Review. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 12(2), 287–296.

Farissa, R. A., Mayasari, R., & Umaidah, Y. (2021). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung. Journal of Applied Informatics and Computing, 5(2), 109–116. https://doi.org/10.30871/jaic.v5i1.3237 DOI: https://doi.org/10.30871/jaic.v5i1.3237

Hakim, L., Santoso, H., Yusuf, M., & Afiyati, A. (2024). Sosialisasi Peran Teknologi Artificial Inteligence untuk Klasifikasi Status Sosial Masyarakat DKI Jakarta. Jurnal Abdidas, 5(3), 97–102. https://mail.abdidas.org/index.php/abdidas/article/view/902%0Ahttps://mail.abdidas.org/index.php/abdidas/article/download/902/629

Irwanto, A., & Goeirmanto, L. (2023). Sentiment Analysis from Twitter about Covid-19 Vaccination in Indonesia using Naïve Bayes and XGboost Classifier Algorithm. Sinergi (Indonesia), 27(2), 145–152. https://doi.org/10.22441/sinergi.2023.2.001 DOI: https://doi.org/10.22441/sinergi.2023.2.001

Jan Melvin Ayu Soraya Dachi, & Pardomuan Sitompul. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470 DOI: https://doi.org/10.55606/jurrimipa.v2i2.1470

Marcilio, W. E., & Eler, D. M. (2020). From explanations to feature selection: Assessing SHAP values as feature selection mechanism. Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 340–347. https://doi.org/10.1109/SIBGRAPI51738.2020.00053 DOI: https://doi.org/10.1109/SIBGRAPI51738.2020.00053

Maulana, E., & Haryanto, H. C. (2020). Bagaimana Kondisi Kesadaran Lingkungan Terkait Pencemaran Udara Yang Dimiliki Oleh Masyarakat Perkotaan? (Studi Pendahuluan Pada Masyarakat Di Jakarta). INQUIRY: Jurnal Ilmiah Psikologi, 11(1), 40–50. https://doi.org/10.51353/inquiry.v11i1.415 DOI: https://doi.org/10.51353/inquiry.v11i1.415

Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 7(2), 45–51. https://doi.org/10.35329/jiik.v7i2.203 DOI: https://doi.org/10.35329/jiik.v7i2.203

Nelson, M. J., & Hoover, A. K. (2020). Notes on Using Google Colaboratory in AI Education. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 533–534. https://doi.org/10.1145/3341525.3393997 DOI: https://doi.org/10.1145/3341525.3393997

Perdana, C., Usep Abdul Rosid, & Bian Austin Okto. (2024). Visualisasi Data Aset Tidak Bergerak Menggunakan Looker Studio Pada PT XYZ. Jurnal Informatika, 3(1), 37–44. https://doi.org/10.57094/ji.v3i1.1607 DOI: https://doi.org/10.57094/ji.v3i1.1607

Pustaka, T. (2024). PENGEMBANGAN APLIKASI BANK ACCOUNT FRAUD DETECTION. 8(3), 2916–2922. DOI: https://doi.org/10.36040/jati.v8i3.9564

Rininda, G., Hartami Santi, I., & Kirom, S. (2024). Penerapan Svm Dalam Analisis Sentimen Pada Edlink Menggunakan Pengujian Confusion Matrix. JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3335–3342. https://doi.org/10.36040/jati.v7i5.7420 DOI: https://doi.org/10.36040/jati.v7i5.7420

Sang, A. I., Sutoyo, E., & Darmawan, I. (2021). Analisis Data Mining Untuk Klasifikasi Data Kualitas Udara Dki Jakarta Menggunakan Algoritma Decision Tree Dan Support Vector Machine Data Minning Analysis for Classification of Air Quality Data Dki Jakarta Using Decision Tree Algorthm and Support Vector . E-Proceeding of Engineering, 8(5), 8954–8963.

Sari, E. N., & Purwaningsih, E. (2022). Air Quality Index Classification Using Neural Network Algorithms. Systematics, 4, No. 3(3), 473–481. https://journal.unsika.ac.id/index.php/systematics/article/view/7722%0Ahttps://journal.unsika.ac.id/index.php/systematics/article/download/7722/3571

Setio, P. B. N., Saputro, D. R. S., & Bowo Winarno. (2020). Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5. PRISMA, Prosiding Seminar Nasional Matematika, 3, 64–71.

Umri, S. S. A., Firdaus, M. S., Primajaya, A., Studi, P., Informatika, T., Komputer, F. I., Karawang, U. S., Karawang, K., Machine, V., Neighbors, K., Bayes, N., Backpropagation, N. N., Neighbors, K., & Machine, S. V. (2021). Analysis and Comparison of Classification Algorithm in Air. JIKO (Jurnal Informatika Dan Komputer), 4(2), 98–104. https://doi.org/10.33387/jiko DOI: https://doi.org/10.33387/jiko.v4i2.2871

Downloads

Published

15-12-2025

Issue

Section

Research Articles

How to Cite

[1]
Harni Kusniyati, Yerico Immanuel Rumahorbo, and Raka Yusuf, “Extreme Gradient Boosting Performance on Air Pollution Level Classification in DKI Jakarta”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 6, pp. 274–282, Dec. 2025, doi: 10.32628/CSEIT2511649.