Modern Enterprise Data Platforms: Architectural Patterns and Operational Strategies for Scalable Data Processing

Authors

  • Satyanarayan Murthy Polisetty Vice President, Bank of America, USA Author

DOI:

https://doi.org/10.32628/CSEIT2511651

Keywords:

enterprise data management, Extract, Transform, and Load (ETL), Hadoop Distributed File System, ETL Processing Framework, Data Validation

Abstract

The rapid expansion of enterprise data ecosystems has driven organizations to adopt robust and scalable data platform architectures capable of supporting diverse analytical and regulatory requirements. This paper examines the design and operational characteristics of modern enterprise data platforms deployed within large financial organizations, emphasizing the coexistence of traditional data warehouses and distributed big data environments. By analyzing production-scale implementations, the study highlights architectural patterns, processing frameworks, and governance mechanisms that support reliable data ingestion, transformation, and analytics. The findings illustrate how enterprises can manage heterogeneous data sources at scale while preserving data accuracy, auditability, and regulatory compliance through structured ETL frameworks, automated data validation pipelines, and hybrid deployment models spanning on-premises and cloud infrastructures.

Downloads

Download data is not yet available.

References

Chen, J. (2021). Ontology drift is a challenge for explainable data governance. Proceedings of the AAAI Workshop on Explainable Artificial Intelligence. arXiv:2108.05401.

Shaon, F., Rahaman, M. S., & Kantarcioglu, M. (2021). The Queen’s Guard: Secure enforcement of fine-grained access control in distributed data analytics platforms. Proceedings of the IEEE International Conference on Big Data, 2713–2722.

Nambiar, A., & Mundra, D. (2022). An overview of data warehouse and data lake in modern enterprise data management. Big Data and Cognitive Computing, 6(4), 132. DOI: https://doi.org/10.3390/bdcc6040132

Tsiatsos, T., Pisoni, G., & Molnár, G. (2023). Data management and enterprise architectures for responsible AI services. Proceedings of the International Conference on Interactive Collaborative Learning (ICL 2023), 995–1008. Springer.

Sandeep Kamadi. (2022). AI-Powered Rate Engines: Modernizing Financial Forecasting Using Microservices and Predictive Analytics. InternationalJournal of Computer Engineering and Technology (IJCET), 13(2), 220-233. https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_13_ISSUE_2/IJCET_13_02_024.pdf DOI: https://doi.org/10.34218/IJCET_13_02_024

Ravat, F., & Zhao, Y. (2019). Data lakes: Trends and perspectives. Proceedings of the 21st International Conference on Data Warehousing and Knowledge Discovery (DaWaK), 304–313. DOI: https://doi.org/10.1007/978-3-030-27615-7_23

Sandeep Kamadi. (2022). Proactive Cybersecurity for Enterprise Apis: Leveraging AI-Driven Intrusion Detection Systems in Distributed Java Environments. International Journal of Research in Computer Applications and Information Technology (IJRCAIT), 5(1), 34-52. https://iaeme.com/MasterAdmin/Journal_uploads/IJRCAIT/VOLUME_5_ISSUE_1/IJRCAIT_05_01_004.pdf DOI: https://doi.org/10.34218/IJRCAIT_05_01_004

Abelló, A., Romero, O., & Vassiliadis, P. (2019). Big data design for ETL processes. Proceedings of the ACM International Workshop on Data Warehousing and OLAP, 73–80.

Gujjala, Praveen Kumar Reddy. (2022). ENHANCING HEALTHCARE INTEROPERABILITY THROUGH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: A PREDICTIVE ANALYTICS FRAMEWORK FOR UNIFIED PATIENT CARE. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY. 13. 13-16. 10.34218/IJCET_13_03_018. DOI: https://doi.org/10.34218/IJCET_13_03_018

Joshi, A., & Patel, D. (2020). Enterprise data architecture for financial institutions: A hybrid cloud approach. Proceedings of the IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 145–152.

Gujjala, Praveen Kumar Reddy. (2022). Data science pipelines in lakehouse architectures: A scalable approach to big data analytics. World Journal of Advanced Research and Reviews. 16. 1412-1425. 10.30574/wjarr.2022.16.3.1305. DOI: https://doi.org/10.30574/wjarr.2022.16.3.1305

Gujjala, Praveen Kumar Reddy. (2023). Advancing Artificial Intelligence and Data Science: A Comprehensive Framework for Computational Efficiency and Scalability. INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND INFORMATION TECHNOLOGY. 6. 155-166. 10.34218/IJRCAIT_06_01_012. DOI: https://doi.org/10.34218/IJRCAIT_06_01_012

Ramachandran, A., & Shah, H. (2021). Automated data quality validation in ETL pipelines. Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), 4055–4058.

Gujjala, Praveen Kumar Reddy. (2023). Autonomous Healthcare Diagnostics : A Multi-Modal AI Framework Using AWS SageMaker, Lambda, and Deep Learning Orchestration for Real-Time Medical Image Analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 760-772. 10.32628/CSEIT23564527. DOI: https://doi.org/10.32628/CSEIT23564527

Ravi Kumar Ireddy, “Deep Learning Architecture for Banking Risk Management: Cloud and AI-Driven Predictive Analytics Solution”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 5, pp. 1194–1206, Oct. 2024, doi: 10.32628/CSEIT24113395. DOI: https://doi.org/10.32628/CSEIT24113395

Gujjala, Praveen Kumar Reddy. (2023). The Future of Cloud-Native Lakehouses: Leveraging Serverless and Multi-Cloud Strategies for Data Flexibility. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 868-882. 10.32628/CSEIT239093. DOI: https://doi.org/10.32628/CSEIT239093

Gorton, I., Klein, J., & Ernst, N. (2022). The role of data architecture in modern enterprise systems. Proceedings of the IEEE International Conference on Software Architecture (ICSA), 1–12.

Thalheim, B., & Bifulco, R. (2021). Foundations of data lineage and governance in financial systems. Proceedings of the IFIP International Conference on Enterprise Information Systems, 88–104.

Gujjala, Praveen Kumar Reddy. (2023). Quantum-Enhanced Multi-Factor Authentication Framework for Digital Banking Systems: A Post-Quantum Cryptographic Approach. International Journal For Multidisciplinary Research. 5. 10.36948/ijfmr.2023.v05i06.55443. DOI: https://doi.org/10.36948/ijfmr.2023.v05i06.55443

Uttama Reddy Sanepalli, “GitOps Security Architecture with Zero Trust: Identity-Driven Control Planes for Cloud-Native Deployments”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 2, pp. 1198–1209, Apr. 2024, doi: 10.32628/CSEIT24102255. DOI: https://doi.org/10.32628/CSEIT24102255

Oleti, Chandra Sekhar. (2023). Enterprise ai at scale: architecting secure microservices with spring boot and AWS. International journal of research in computer applications and information technology. 6. 133-154. 10.34218/IJRCAIT_06_01_011.

Gujjala, Praveen Kumar Reddy. (2024). Real-time data engineering and ai-driven analytics: a unified framework for intelligent stream processing and predictive modeling. International journal of computer engineering & technology. 15. 238-248. 10.34218/IJCET_15_02_026. DOI: https://doi.org/10.34218/IJCET_15_02_026

Oleti, Chandra Sekhar. (2022). Serverless intelligence: securing j2ee-based federated learning pipelines on AWS. International journal of computer engineering & technology. 13. 163-180. 10.34218/IJCET_13_03_017. DOI: https://doi.org/10.34218/IJCET_13_03_017

Gujjala, Praveen Kumar Reddy. (2024). Designing resilient multi-region monitoring systems in AWS: A Hybrid Approach with CloudWatch, Prometheus, and Grafana. World Journal of Advanced Research and Reviews. 21. 2699-2710. 10.30574/wjarr.2024.21.3.0897. DOI: https://doi.org/10.30574/wjarr.2024.21.3.0897

Sandeep Kamadi, " AI-Augmented Threat Intelligence for Autonomous Vulnerability Management in Cloud-Native Clusters" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 10, Issue 1, pp.378-387, January-February-2024. Available at doi : https://doi.org/10.32628/CSEIT2425451 DOI: https://doi.org/10.32628/CSEIT2425451

Ravi Kumar Ireddy, " AI Driven Predictive Vulnerability Intelligence for Cloud-Native Ecosystems" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 2, pp.894-903, March-April-2023. Available at doi : https://doi.org/10.32628/CSEIT2342438 DOI: https://doi.org/10.32628/CSEIT2342438

Gujjala, Praveen Kumar Reddy. (2024). AutoML Pipeline Orchestration and Explainable AI Integration in Databricks Environments. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i03.55444. DOI: https://doi.org/10.36948/ijfmr.2024.v06i03.55444

Uttama Reddy Sanepalli, “Operationalizing MLOps with Databricks Pipelines: Scalable Machine Learning in Cloud Environments”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 6, pp. 2544–2552, Dec. 2024, doi: 10.32628/CSEIT25113573. DOI: https://doi.org/10.32628/CSEIT25113573

Gujjala, Praveen Kumar Reddy. (2024). Scalable and Intelligent Centralized Alerting Frameworks for Multi-Region Cloud Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 10. 1132-1144. 10.32628/CSEIT24113370. DOI: https://doi.org/10.32628/CSEIT24113370

Gujjala, Praveen Kumar Reddy. (2024). Optimizing ETL Pipelines with Delta Lake and Medallion Architecture: A Scalable Approach for Large-Scale Data. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i06.55445. DOI: https://doi.org/10.36948/ijfmr.2024.v06i06.55445

Gujjala, Praveen Kumar Reddy. (2025). Generative AI for synthetic data in banking transactions: Balancing utility and compliance. World Journal of Advanced Research and Reviews. 25. 2478-2493. 10.30574/wjarr.2025.25.3.0828. DOI: https://doi.org/10.30574/wjarr.2025.25.3.0828

Oleti, Chandra Sekhar. (2022). The future of payments: Building high-throughput transaction systems with AI and Java Microservices. World Journal of Advanced Research and Reviews. 16. 1401-1411. 10.30574/wjarr.2022.16.3.1281. DOI: https://doi.org/10.30574/wjarr.2022.16.3.1281

Oleti, Chandra Sekhar. (2023). Enterprise ai at scale: architecting secure microservices with spring boot and AWS. International journal of research in computer applications and information technology. 6. 133-154. 10.34218/IJRCAIT_06_01_011. DOI: https://doi.org/10.34218/IJRCAIT_06_01_011

Thompson, D., Wilson, M., & Garcia, R. (2018). Container security challenges in cloud-native environments. Journal of Systems Security, 22(7), 312–329.

Oleti, Chandra Sekhar. (2023). Cognitive Cloud Security: Machine Learning-Driven Vulnerability Management for Containerized Infrastructure. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 773-788. 10.32628/CSEIT23564528. DOI: https://doi.org/10.32628/CSEIT23564528

Oleti, Chandra Sekhar. (2023). Credit Risk Assessment Using Reinforcement Learning and Graph Analytics on AWS. World Journal of Advanced Research and Reviews. 20. 1399-1409. 10.30574/wjarr.2023.20.1.2084. DOI: https://doi.org/10.30574/wjarr.2023.20.1.2084

Wang, T., & Luo, X. (2020). AI-enhanced continuous compliance for cloud security automation. IEEE Cloud Computing, 7(6), 22–31.

Oleti, Chandra Sekhar. (2023). Real-Time Feature Engineering and Model Serving Architecture using Databricks Delta Live Tables. 9. 746-758. 10.32628/CSEIT23906203. DOI: https://doi.org/10.32628/CSEIT23906203

Sandeep Kamadi, " Adaptive Federated Data Science & MLOps Architecture: A Comprehensive Framework for Distributed Machine Learning Systems" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 8, Issue 6, pp.745-755, November-December-2022. Available at doi : https://doi.org/10.32628/CSEIT22555 DOI: https://doi.org/10.32628/CSEIT22555

Oleti, Chandra Sekhar. (2024). AI-Driven security intelligence: transforming java enterprise observability into proactive cyber threat detection. International journal of computer engineering & technology. 15. 144-162. 10.34218/IJCET_15_01_015. DOI: https://doi.org/10.34218/IJCET_15_01_015

Oleti, Chandra Sekhar. (2024). Post-Quantum Cryptographic Architecture for Secure Banking: Lattice-Based Implementation with Blockchain Integration. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i02.55514. DOI: https://doi.org/10.36948/ijfmr.2024.v06i02.55514

Oleti, Chandra Sekhar. (2024). Deep Learning-Enhanced Blockchain Mechanism for Secure Banking Transaction Processing: An Adaptive Smart Contracts approach. World Journal of Advanced Research and Reviews. 22. 2338-2349. 10.30574/wjarr.2024.22.3.1737. DOI: https://doi.org/10.30574/wjarr.2024.22.3.1737

Sandeep Kamadi, " Risk Exception Management in Multi-Regulatory Environments: A Framework for Financial Services Utilizing Multi-Cloud Technologies" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 7, Issue 5, pp.350-361, September-October-2021. Available at doi : https://doi.org/10.32628/CSEIT217560 DOI: https://doi.org/10.32628/CSEIT217560

Oleti, Chandra Sekhar. (2024). Multi-Agent Generative AI: Coordinated Synthesis for Complex Problem-Solving. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 10. 1145-1160. 10.32628/CSEIT24113371. DOI: https://doi.org/10.32628/CSEIT24113371

Oleti, Chandra Sekhar. (2024). Federated Learning Implementation Framework using Databricks: Privacy-Preserving Model Training at Scale. International Journal For Multidisciplinary Research. 6. 10.36948/ijfmr.2024.v06i06.55515. DOI: https://doi.org/10.36948/ijfmr.2024.v06i06.55515

Oleti, Chandra Sekhar. (2025). Real-time payment systems: transforming global economic infrastructure through digital financial innovation. World Journal of Advanced Research and Reviews. 25. 2464-2477. 10.30574/wjarr.2025.25.3.0827. DOI: https://doi.org/10.30574/wjarr.2025.25.3.0827

Hassan, M., & Al-Rawahi, A. (2019). Regulatory compliance frameworks for enterprise data management. Proceedings of the International Conference on Advanced Information Systems Engineering (CAiSE), 392–405.

Sandeep Kamadi , " Identity-Driven Zero Trust Automation in GitOps: Policy-as-Code Enforcement for Secure code Deployments" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 3, pp.893-902, May-June-2023. Available at doi : https://doi.org/10.32628/CSEIT235148 DOI: https://doi.org/10.32628/CSEIT235148

Park, J., & Lee, S. (2023). Cloud-native data management with microservices and containers. Proceedings of the IEEE International Conference on Cloud Engineering (IC2E), 178–187.

Zhang, Y., & Li, H. (2020). AI-driven ETL process optimization for enterprise data lakes. Proceedings of the ACM Symposium on Cloud Computing (SoCC), 355–367.

Downloads

Published

20-12-2025

Issue

Section

Research Articles

How to Cite

[1]
Satyanarayan Murthy Polisetty, “Modern Enterprise Data Platforms: Architectural Patterns and Operational Strategies for Scalable Data Processing”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 6, pp. 283–295, Dec. 2025, doi: 10.32628/CSEIT2511651.