Using Power BI and SQL for Predictive Health Data Analytics to Improve Decision-Making and Performance Tracking in Public Health Systems

Authors

  • Chijioke Ronald Nwokocha School of Management, University of Michigan, Flint Michigan, USA Author
  • Olaide Oluwatobi Ogundolapo Department of Industrial Engineering, Texan A&M University, Kingsville, Texas, USA Author
  • Michael Misan Eji Quality Assurance/IT Department, Global Caring Group, Gloucester, UK Author

DOI:

https://doi.org/10.32628/CSEIT2511662

Keywords:

Predictive Analytics, Public Health Systems, SQL Data Engineering, Power BI Dashboards, Health Decision-Making

Abstract

This review examines how SQL-based data engineering and Power BI-driven predictive analytics can transform public health decision-making by enabling real-time monitoring, forecasting, and performance optimization across complex health systems. It synthesizes how mature data pipelines, rigorous governance, and advanced feature engineering such as lags, rolling averages, seasonality markers, and spatial aggregation support critical use cases including outbreak early warning, patient flow prediction, stock-out risk identification, and staffing optimization. The paper further evaluates model integration pathways such as AutoML, Python/R, Azure Machine Learning, and in-database scoring, alongside dashboard architectures that incorporate KPI scorecards, drill-throughs, geospatial mapping, and cohort analytics to enhance insight delivery and executive action. Validation considerations including fairness, interpretability, drift detection, and recalibration are explored, as well as implementation strategies involving stakeholder alignment, change management, and analytics maturity frameworks. Finally, the review highlights persistent challenges in data quality, infrastructure, and workforce capacity, and highlights the necessity of privacy-by-design, responsible AI, and equity-centered analytics. Overall, the study provides a concise roadmap for scalable, ethical, and effective deployment of predictive analytics within public health systems.

Downloads

Download data is not yet available.

References

Abimbola, S., Baatiema, L., & Bigdeli, M. (2019). The impacts of governance on health system performance in low- and middle-income countries: A systematic review. Health Policy and Planning, 34(8), ii4–ii12. https://doi.org/10.1093/heapol/czz109 DOI: https://doi.org/10.1093/heapol/czz055

Adegoke, K., Adegoke, A., Dawodu, D., Bayowa, A., & Adekoya, A. (2025). Interoperability in digital healthcare: Enhancing consumer health and transforming care systems. DOI: https://doi.org/10.20944/preprints202502.1774.v1

Ajiboye, A. S., Balogun, T. K., Imoh, P. O., Ijiga, A. C., Olola, T. M., & Ahmadu, E. O. (2025). Enhancing adolescent suicide prevention through the implementation of trauma-informed care models in school-based mental health programs. International Journal of Applied Research in Social Sciences, 7(5). https://doi.org/10.51594/ijarss.v7i5.1925 DOI: https://doi.org/10.51594/ijarss.v7i5.1925

Ajiboye, A. S., Balogun, T. K., Imoh, P. O., Ijiga, A. C., Olola, T. M., & Ahmadu, E. O. (2025). Understanding the impact of social media on mental health in autistic youth and expanding access to culturally responsive behavioral health services in underserved communities. International Journal of Scientific Research in Humanities and Social Sciences, 2(3). https://doi.org/10.32628/IJSRHSS25234 DOI: https://doi.org/10.32628/IJSRHSS25234

Amanna, A. (2025). Deploying next-generation artificial intelligence ecosystems for real-time biosurveillance, precision health analytics and dynamic intervention planning in life science research. Magna Scientia Advanced Biology and Pharmacy, 16(1), 38-54. DOI: https://doi.org/10.30574/msabp.2025.16.1.0066

Amebleh, J., & Igba, E. (2024). Causal uplift for rewards aggregators: Doubly robust heterogeneous treatment-effect modeling with SQL/Python pipelines and real-time inference. International Journal of Scientific Research and Modern Technology, 3(5), 39–55. https://doi.org/10.38124/ijsrmt.v3i5.819 DOI: https://doi.org/10.38124/ijsrmt.v3i5.819

Amebleh, J., & Okoh, O. F. (2023). Explainable risk controls for digital health payments: SHAP-constrained gradient boosting with policy-based access, audit trails, and chargeback mitigation. International Journal of Scientific Research and Modern Technology, 2(4), 13–28. https://doi.org/10.38124/ijsrmt.v2i4.746 DOI: https://doi.org/10.38124/ijsrmt.v2i4.746

Atalor, S. I. (2024). Building a geo-analytic public health dashboard for tracking cancer drug deserts in U.S. counties. International Medical Science Research Journal, 4(11). https://doi.org/10.51594/imsrj.v4i11.1932 DOI: https://doi.org/10.51594/imsrj.v4i11.1932

Atalor, S. I., & Enyejo, J. O. (2025). Mobile health platforms for medication adherence among oncology patients in rural populations. International Journal of Innovative Science and Research Technology, 10(5). https://doi.org/10.38124/ijisrt/25may415 DOI: https://doi.org/10.38124/ijisrt/25may415

Ayoola, V. B., Ugochukwu, U. N., Adeleke, I., Michael, C. I., Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-driven fraud detection in health care enhancing data loss prevention and cybersecurity analytics for real-time protection of patient records. International Journal of Scientific Research and Modern Technology, 3(11). DOI: https://doi.org/10.38124/ijsrmt.v3i11.112

Babatuyi, P. B., Imoh, P. O., Igwe, E. U. & Enyejo, J. O. (2025).The Impact of Public Health Policy on Resource Distribution and Health Equity during Epidemics in Low-Income U.S. Populations International Journal of Healthcare Sciences Vol. 13, Issue 1, DOI: https://doi.org/10.5281/zenodo.16885344

Babatuyi, P. B., Imoh, P. O., Igwe, E. U., & Enyejo, J. O. (2024). The role of public health leadership in strengthening emergency response protocols and addressing infrastructure gaps during infectious disease outbreaks. International Journal of Scientific Research and Modern Technology, 3(10), 109–122. https://doi.org/10.38124/ijsrmt.v3i10.735 DOI: https://doi.org/10.38124/ijsrmt.v3i10.735

Balogun, S. A., Ijiga, O. M., Okika, N., Enyejo, L. A., & Agbo, O. J. (2025). Machine learning-based detection of SQL injection and data exfiltration through behavioral profiling of relational query patterns. International Journal of Scientific Research and Modern Technology, 10(8). https://doi.org/10.38124/ijisrt/25aug324 DOI: https://doi.org/10.38124/ijisrt/25aug324

Bussa, S. (2023). Enhancing BI tools for improved data visualization and insights. International Journal of Computer Science and Mobile Computing, 12(2), 70-92. DOI: https://doi.org/10.47760/ijcsmc.2023.v12i02.005

Choudhary, V., Mehta, A., Patel, K., Niaz, M., Panwala, M., & Nwagwu, U. (2024). Integrating Data Analytics and Decision Support Systems in Public Health Management. South Eastern European Journal of Public Health, 158-72.

Donkor, F., Okafor, M. N., & Enyejo, J. O. (2025). Exploring metabolomics guided authentication of plant-based meat alternatives supporting regulatory standards and consumer health protection. International Journal of Innovative Science and Research Technology, 10(10). https://doi.org/10.38124/ijisrt/25oct1027 DOI: https://doi.org/10.38124/ijisrt/25oct1027

Dritsas, E., & Trigka, M. (2025). A Survey on Database Systems in the Big Data Era: Architectures, Performance, and Open Challenges. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2025.3572059

Frimpong, G., Peter-Anyebe, A. C., & Ijiga, O. M. (2023). Artificial intelligence driven compliance automation improving audit readiness and fraud detection within healthcare revenue cycle management systems. Global Journal of Engineering, Science & Social Science Studies, 9(9).

Frimpong, G., Peter-Anyebe, A. C., & Omachi, A. (2024). Differential privacy and federated learning models ensuring HIPAA-compliant data sharing across hospital electronic health record networks. International Journal of Scientific Research and Modern Technology, 3(12), 223–235. DOI: https://doi.org/10.38124/ijsrmt.v3i12.962

Frimpong, G., Peter-Anyebe, A. C., Okoh, O. F., & James, U. U. (2025). Zero trust security architectures safeguarding protected health information within multi-cloud telemedicine and cross-border data environments. International Journal of Innovative Science and Research Technology, 10(10). https://doi.org/10.38124/ijisrt/25oct1130 DOI: https://doi.org/10.38124/ijisrt/25oct1130

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation and model recalibration strategies. ACM Computing Surveys, 46(4), 1–37. https://doi.org/10.1145/2523813 DOI: https://doi.org/10.1145/2523813

Gichoya, J. W., McCoy, L. G., Celi, L. A., & Ghassemi, M. (2021). Equity in essence: a call for operationalising fairness in machine learning for healthcare. BMJ health & care informatics, 28(1), e100289. DOI: https://doi.org/10.1136/bmjhci-2020-100289

Henry (Nov 27, 2025). ETL vs. ELT: Choosing the Right Data Pipeline Strategy for Massive Datasets: Case Study Using Apache Spark for Efficient Ingestion and Transformation. Retrieved from: https://medium.com/data-science-collective/etl-vs-elt-choosing-the-right-data-pipeline-strategy-for-massive-datasets-eace456dff55

Ibuan, O. E., Igwe, E. U., & Peter-Anyebe, A. C. (2025). Mindfulness-based interventions in adolescent behavioral health: A review of school-based applications and culturally responsive practices. Malaysian Mental Health Journal, 4(1), 13–22.

Idoko, D. O., Agaba, J. A., Nduka, I., Badu, S. G., Ijiga, A. C., & Okereke, E. K. (2024). The role of HSE risk assessments in mitigating occupational hazards and infectious disease spread: A public health review. Open Access Research Journal of Biology and Pharmacy, 11(02), 011–030. DOI: https://doi.org/10.53022/oarjbp.2024.11.2.0029

Idoko, D. O., Mbachu, O. E., Babalola, I. N. O., Erondu, O. F., Dada-Abidakun, O., & Adeyeye, Y. (2024). Biostatistics for predicting health disparities in infectious disease outcomes, using real-world evidence and public health intervention data. IRE Journals, 8(4).

Igwama, G. T., Olaboye, J. A., Maha, C. C., Ajegbile, M. D., & Abdul, S. (2024). Big data analytics for epidemic forecasting: Policy Frameworks and technical approaches. International Journal of Applied Research in Social Sciences, 6(7), 1449-1460. DOI: https://doi.org/10.51594/ijarss.v6i7.1334

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 11(01), 535–551. DOI: https://doi.org/10.30574/ijsra.2024.11.1.0078

Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 12(01), 202–218 DOI: https://doi.org/10.30574/msarr.2024.12.1.0174

Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I., & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 10(02), 81–104. DOI: https://doi.org/10.53022/oarjbp.2024.10.2.0015

Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I., & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 18(01), 336–354. DOI: https://doi.org/10.30574/wjbphs.2024.18.1.0214

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-driven public health literacy: Using data visualization and analytics to improve disease awareness in secondary schools. International Journal of Scientific Research in Science and Technology, 10(4), 773–793. https://doi.org/10.32628/IJSRST2221189 DOI: https://doi.org/10.32628/IJSRST2221189

Ijiga, O. M., Okika, N., Balogun, S. A., Enyejo, L. A., & Agbo, O. J. (2025). A comprehensive review of federated learning architectures for insider threat detection in distributed SQL-based enterprise environments. International Journal of Innovative Science and Research Technology, 10(7).

Keesara, S., Jonas, A., & Schulman, K. (2020). Covid-19 and health care’s digital revolution. The New England Journal of Medicine, 382(23), e82. https://doi.org/10.1056/NEJMp2005835 PubMed DOI: https://doi.org/10.1056/NEJMp2005835

Noorihekmat, S., Rahimi, H., Mehrolhassani, M. H., Chashmyazdan, M., Haghdoost, A. A., Tabatabaei, S. V. A., & Dehnavieh, R. (2020). Frameworks of performance measurement in public health and primary care system: A scoping review and meta-synthesis. International Journal of Preventive Medicine, 11(1), 165. DOI: https://doi.org/10.4103/ijpvm.IJPVM_34_19

Nwokocha, C. R., Peter-Anyebe, A. C., & Ijiga, O. M. (2021). Evaluating FHIR-Driven Interoperability Frameworks for Secure System Migration and Data Exchange in U.S. Health Information Networks. International Journal of Scientific Research in Science and Technology Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) doi: https://doi.org/10.32628/IJSRST523105135 DOI: https://doi.org/10.32628/IJSRST523105135

Ofori, M. A., Lartey, S., Durneva, P., Jha, N., Mittal, N., Roy, S., ... & Joshi, A. (2025). Visual communication of public health data: a scoping review. Frontiers in Digital Health, 7, 1555231. DOI: https://doi.org/10.3389/fdgth.2025.1555231

Okpanachi, A. T., Igba, E., Imoh, P. O., Dzakpasu, N. H., & Nyaledzigbor, M. (2025). Leveraging digital biomarkers and advanced data analytics in medical laboratory to enhance early detection and diagnostic accuracy in cardiovascular diseases. International Journal of Scientific Research in Science and Technology, 12. https://doi.org/10.32628/IJSRST251222590 DOI: https://doi.org/10.32628/IJSRST251222590

Onmonya, O. M., Igwe, E. U., & Imoh, P. O. (2025). Pastoral counseling as a trauma-informed response to intimate partner violence and behavioral health challenges among marginalized communities and autistic adults with co-occurring trauma. Malaysian Mental Health Journal. http://doi.org/10.26480/mmhj.02.2025.40.49

Onyekaonwu, C. B., Ogundolapo, O. O., & Peter-Anyebe, A. C. (2025). The Role of Technical Product Managers in Architecting AI-Powered Infrastructure: A Compliance-Driven Framework. International Journal of Innovative Science and Research Technology, Volume 10, Issue 12, December – 2025. DOI: https://doi.org/10.38124/ijisrt/25dec1185 DOI: https://doi.org/10.38124/ijisrt/25dec1185

Onyekaonwu, C. B., Peter-Anyebe, A. C., & Raphael, F. O. (2019). From prescription to prediction: Leveraging AI/ML to improve medication adherence and adverse drug event detection in community pharmacies. International Journal of Scientific Research in Science and Technology, 6(5), 460–476. DOI: https://doi.org/10.32628/IJSRST52310387

Patharkar, A., Cai, F., Al-Hindawi, F., & Wu, T. (2024). Predictive modeling of biomedical temporal data in healthcare applications: review and future directions. Frontiers in Physiology, 15, 1386760. DOI: https://doi.org/10.3389/fphys.2024.1386760

Rehman, A., Naz, S., & Razzak, I. (2022). Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimedia Systems, 28(4), 1339-1371. DOI: https://doi.org/10.1007/s00530-020-00736-8

Shadmi, E., Chen, Y., Dourado, I., Faran-Perach, I., Furler, J., Hangoma, P., Hanvoravongchai, P., et al. (2020). Health equity and COVID-19: Global perspectives. International Journal for Equity in Health, 19(1), 104. https://doi.org/10.1186/s12939-020-01218-z DOI: https://doi.org/10.1186/s12939-020-01218-z

Sheikh, A., Anderson, M., Albala, S., Casadei, B., Franklin, B. D., Richards, M., ... & Mossialos, E. (2021). Health information technology and digital innovation for national learning health and care systems. The Lancet Digital Health, 3(6), e383-e396. DOI: https://doi.org/10.1016/S2589-7500(21)00005-4

Tello, M., Reich, E. S., Puckey, J., Maff, R., Garcia-Arce, A., Bhattacharya, B. S., & Feijoo, F. (2022). Machine learning based forecast for the prediction of inpatient bed demand. BMC medical informatics and decision making, 22(1), 55. DOI: https://doi.org/10.1186/s12911-022-01787-9

Tesema, G. A., Tessema, Z. T., Heritier, S., Stirling, R. G., & Earnest, A. (2023). A systematic review of joint spatial and spatiotemporal models in health research. International Journal of Environmental Research and Public Health, 20(7), 5295. DOI: https://doi.org/10.3390/ijerph20075295

The Further Team, (Mar 21, 2024). The Future of Personalized Healthcare: Predictive Analytics. Retrieved from: https://www.gofurther.com/blog/predictive-analytics-for-healthcare

Umoren, J., Ajayi-Kaffi, O., & Kaise, F. (2025). An analytical framework for digital transformation in healthcare product supply chains. International Journal of Science and Research Archive, 14(1), 1920–193. https://doi.org/10.30574/ijsra.2025.14.1.0190 DOI: https://doi.org/10.30574/ijsra.2025.14.1.0190

Valente, F., Paredes, S., Henriques, J., Rocha, T., de Carvalho, P., & Morais, J. (2022). Interpretability, personalization and reliability of a machine learning based clinical decision support system. Data Mining and Knowledge Discovery, 36(3), 1140-1173. DOI: https://doi.org/10.1007/s10618-022-00821-8

Vincent, A. M., & Jidesh, P. (2023). An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms. Scientific Reports, 13(1), 4737. DOI: https://doi.org/10.1038/s41598-023-32027-3

Walha, A., Ghozzi, F., & Gargouri, F. (2024). Data integration from traditional to big data: main features and comparisons of ETL approaches. Journal of Supercomputing, 80(19). DOI: https://doi.org/10.1007/s11227-024-06413-1

Whitelaw, S., Mamas, M. A., Topol, E., & Van Spall, H. G. C. (2020). Applications of digital technology in COVID-19 pandemic planning and response. The Lancet Digital Health, 2(8), e435–e440. https://doi.org/10.1016/S2589-7500(20)30142-4 PubMed DOI: https://doi.org/10.1016/S2589-7500(20)30142-4

Downloads

Published

20-12-2025

Issue

Section

Research Articles

How to Cite

[1]
Chijioke Ronald Nwokocha, Olaide Oluwatobi Ogundolapo, and Michael Misan Eji, “Using Power BI and SQL for Predictive Health Data Analytics to Improve Decision-Making and Performance Tracking in Public Health Systems”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 6, pp. 422–444, Dec. 2025, doi: 10.32628/CSEIT2511662.