Optimizing IT Incident and Problem Management Through Data Analytics and ITIL-Aligned Digital Workflows

Authors

  • Richard Asamoah Kwarteng Department of Computer Management Information Systems (CMIS), Southern Illinois University Edwardsville, IL, USA Author
  • Idoko Peter Idoko Electrical/Electronic Engineering Department, University of Ibadan, Nigeria Author
  • Tony Isioma Azonuche Department of Project Management, Amberton University, Garland Texas, USA Author

DOI:

https://doi.org/10.32628/CSEIT2511666

Keywords:

IT Service Management, Incident and Problem Management, ITIL v4; Data Analytics, Digital Workflow Automation

Abstract

This study examines how data analytics and ITIL-aligned digital workflows can be leveraged to optimize IT incident and problem management in complex, digitally transformed enterprise environments. As organizations face increasing incident volumes, recurring service disruptions, and heightened service availability expectations, traditional reactive and manual IT service management approaches have proven insufficient. The study adopts a mixed-methods research design combining quantitative analysis of ITSM operational data with qualitative insights from IT service professionals to evaluate the impact of analytics-driven practices on incident detection, resolution efficiency, and problem prevention. The findings demonstrate that the systematic application of descriptive, diagnostic, and predictive analytics significantly improves mean time to detect (MTTD), mean time to resolve (MTTR), prioritization accuracy, and incident recurrence rates. When embedded within ITIL-aligned digital workflows, analytics outputs are consistently translated into actionable decisions through automated routing, escalation, and remediation processes. This integration enhances service quality, operational reliability, governance visibility, and cross-team coordination, while supporting continuous improvement and value realization in line with the ITIL Service Value System. The study contributes to both theory and practice by extending ITIL implementation through analytics-enabled decision-making and proposing a structured framework for analytics-driven IT service management optimization. Practical implications highlight the need for organizations to invest in integrated analytics, workflow automation, and robust ITSM data governance to achieve resilient and scalable service operations. The study concludes by identifying limitations related to data availability and organizational context and suggests future research directions focused on AI-driven AIOps integration and longitudinal analysis of analytics maturity and service performance outcomes.

Downloads

Download data is not yet available.

References

Ajayi-Kaffi, O., Emmanuel, I., Azonuche, T. I., & Ijiga, O. M. (2025). Agile-driven digital transformation frameworks for optimizing cloud-based healthcare supply chain management systems. DOI: https://doi.org/10.38124/ijsrmt.v4i5.1002

Avevor, M., Attionu, G. T., Osahor, D., Azonuche, T., & Tawo, O. (2023). Beyond funding: Rethinking small business administration strategies and public–private partnerships for minority-owned business resilience (AI, FinTech, and policy synergy).

Avevor, M., Tawo, O. E., Akinola, O. A., Osahor, D., Awofadeju, M., & Azonuche, T. (2023). AI and technology’s influence on economic inequality: A study of wealth distribution in the US.

Axelos. (2019). ITIL® Foundation: ITIL 4 edition. TSO (The Stationery Office).

Ayoola, V. B., Idoko, P. I., Danquah, E. O., Ukpoju, E. A., Obasa, J., Otakwu, A., & Enyejo, J. O. (2024). Optimizing construction management and workflow integration through autonomous robotics for enhanced productivity, safety, and precision on modern construction sites. International Journal of Scientific Research and Modern Technology (IJSRMT), 3(10). DOI: https://doi.org/10.38124/ijsrmt.v3i10.56

Ayoola, V. B., Ugoaghalam, U. J., Idoko, P. I., Ijiga, O. M., & Olola, T. M. (2024). Effectiveness of social engineering awareness training in mitigating spear phishing risks in financial institutions from a cybersecurity perspective. Global Journal of Engineering and Technology Advances, 20(03), 094–117. DOI: https://doi.org/10.30574/gjeta.2024.20.3.0164

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.

Dang, M., Lan, C., Guo, J., Zhang, Z., & Huang, Z. (2019). AIOps: Real-world challenges and research innovations. 2019 IEEE International Conference on Cloud Computing (CLOUD), 4–11. https://doi.org/10.1109/CLOUD.2019.00015 DOI: https://doi.org/10.1109/ICSE-Companion.2019.00023

Darko, D., Kwekutsu, E., & Idoko, I. P. (2025). Synergistic effects of phytochemicals in combating chronic diseases with insights into molecular mechanisms and nutraceutical development.

Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C., & Onwusi, C. N. (2025). Geochemical and mineralogical characteristics of deep porphyry systems: Implications for exploration using ASTER. International Journal of Scientific Research in Civil Engineering, 9(1), 01–21. DOI: https://doi.org/10.32628/IJSRCE25911

Galup, S. D., Dattero, R., Quan, J. J., & Conger, S. (2009). An overview of IT service management. Communications of the ACM, 52(5), 124–127. https://doi.org/10.1145/1506409.1506439 DOI: https://doi.org/10.1145/1506409.1506439

Gaye, A., Bamigwojo, V., Idoko, I. P., & Adeoye, F. A. (2025). Modeling hepatitis B virus transmission dynamics using Atangana fractional order network approach: A review of mathematical and epidemiological perspectives. International Journal of Innovative Science and Research Technology, 10(4), 41–51. DOI: https://doi.org/10.38124/ijisrt/25apr294

Idoko, I. P., Akindele, J. S., Imarenakhue, W. U., & Bashiru, O. (2024). Exploring the role of bioenergy in achieving sustainable waste utilization and promoting low-carbon transition strategies. International Journal of Scientific Research in Science and Technology.

Idoko, I. P., Arthur, C., Ijiga, O. M., Osakwe, A., Enyejo, L. A., & Otakwu, A. (2024). Incorporating radioactive decay batteries into the USA’s energy grid: Solutions for winter power challenges. International Journal, 3(9). DOI: https://doi.org/10.38124/ijsrmt.v3i9.55

Idoko, I. P., Ayodele, T. R., Abolarin, S. M., & Ewim, D. R. E. (2023). Maximizing the cost effectiveness of electric power generation through the integration of distributed generators: Wind, hydro and solar power. Bulletin of the National Research Centre, 47(1), 166. DOI: https://doi.org/10.1186/s42269-023-01125-7

Idoko, I. P., Eniodunmo, O., Danso, M. O., Bashiru, O., Ijiga, O. M., & Manuel, H. N. N. (2024). Evaluating benchmark cheating and the superiority of MAMBA over transformers in Bayesian neural networks: An in-depth analysis of AI performance. World Journal of Advanced Engineering Technology and Sciences, 12(1), 372–389. DOI: https://doi.org/10.30574/wjaets.2024.12.1.0254

Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California’s renewable energy transformation. World Journal of Advanced Engineering Technology and Sciences, 11(1), 274–293. DOI: https://doi.org/10.30574/wjaets.2024.11.1.0058

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. Global Journal of Engineering and Technology Advances, 19(01), 006–036. DOI: https://doi.org/10.30574/gjeta.2024.19.1.0055

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk’s proposed quantum AI: A comprehensive analysis and implications. Global Journal of Engineering and Technology Advances, 18(3), 048–065. DOI: https://doi.org/10.30574/gjeta.2024.18.3.0037

Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA. World Journal of Advanced Research and Reviews, 21(1), 888–913. DOI: https://doi.org/10.30574/wjarr.2024.21.1.0071

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 11(01), 535–551. DOI: https://doi.org/10.30574/ijsra.2024.11.1.0078

Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Ukatu, I. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 7(01), 048–063. DOI: https://doi.org/10.53771/ijbpsa.2024.7.1.0015

Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Journal of Science and Technology, 11, 001–024. DOI: https://doi.org/10.53022/oarjst.2024.11.1.0060

Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493. https://doi.org/10.1016/j.giq.2020.101493 DOI: https://doi.org/10.1016/j.giq.2020.101493

Müller, O., Fay, M., & vom Brocke, J. (2020). The effect of big data and analytics on firm performance: An econometric analysis considering industry characteristics. Journal of Management Information Systems, 35(2), 488–509. https://doi.org/10.1080/07421222.2018.1451955 DOI: https://doi.org/10.1080/07421222.2018.1451955

Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring influencer marketing among women entrepreneurs using encrypted CRM analytics and adaptive progressive web app development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. DOI: https://doi.org/10.38124/ijsrmt.v2i6.562

Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2025). Analyzing email marketing impacts on revenue in home food enterprises using secure SMTP and cloud automation. International Journal of Innovative Science and Research Technology, 10(6), 49–64. DOI: https://doi.org/10.38124/ijisrt/25jun286

Ononiwu, M., Azonuche, T. I., Imoh, P. O., & Enyejo, J. O. (2023). Exploring SAFe framework adoption for autism-centered remote engineering with secure CI/CD and containerized microservices deployment. DOI: https://doi.org/10.32628/IJSRST2302542

Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-driven predictive analytics for customer retention in e-commerce platforms using real-time behavioral tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. DOI: https://doi.org/10.38124/ijsrmt.v2i8.561

Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). Machine learning approaches for fraud detection and risk assessment in mobile banking applications and fintech solutions. DOI: https://doi.org/10.32628/IJSRSET232531

Oyebanji, O. S., Apampa, A. R., Idoko, P. I., Babalola, A., Ijiga, O. M., Afolabi, O., & Michael, C. I. (2024). Enhancing breast cancer detection accuracy through transfer learning: A case study using EfficientNet. World Journal of Advanced Engineering Technology and Sciences, 13(01), 285–318. DOI: https://doi.org/10.30574/wjaets.2024.13.1.0415

Shahin, M., Ali Babar, M., & Zhu, L. (2020). Continuous integration, delivery and deployment: A systematic review on approaches, tools, challenges and practices. IEEE Access, 8, 3783–3806. https://doi.org/10.1109/ACCESS.2019.2965565

Somuah, J., Idoko, I. P., & Ayoola, V. B. (2024). Condition assessment of civil/structural assets in gas stations: Integrating non-destructive testing with code-conformance audits. International Journal of Scientific Research and Modern Technology, 3(3), 14–35. DOI: https://doi.org/10.38124/ijsrmt.v3i3.922

Villamizar, M., Garcés, O., Castro, H., Salamanca, L., Casallas, R., & Gil, S. (2016). Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud. 2016 IEEE/ACM International Conference on Utility and Cloud Computing (UCC), 583–590. https://doi.org/10.1109/UCC.2016.86

Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). SAGE Publications.

Downloads

Published

20-12-2025

Issue

Section

Research Articles

How to Cite

[1]
Richard Asamoah Kwarteng, Idoko Peter Idoko, and Tony Isioma Azonuche, “Optimizing IT Incident and Problem Management Through Data Analytics and ITIL-Aligned Digital Workflows”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 6, pp. 445–474, Dec. 2025, doi: 10.32628/CSEIT2511666.